scholarly journals Line scan-based rapid magnetic resonance imaging of repetitive motion

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hankyeol Lee ◽  
Jeongtaek Lee ◽  
Jang-Yeon Park ◽  
Seung-Kyun Lee

AbstractTwo-dimensional (2D) line scan-based dynamic magnetic resonance imaging (MRI) is examined as a means to capture the interior of objects under repetitive motion with high spatiotemporal resolutions. The method was demonstrated in a 9.4-T animal MRI scanner where line-by-line segmented k-space acquisition enabled recording movements of an agarose phantom and quail eggs in different conditions—raw and cooked. A custom MR-compatible actuator which utilized the Lorentz force on its wire loops in the scanner’s main magnetic field effectively induced the required periodic movements of the objects inside the magnet. The line-by-line k-space segmentation was achieved by acquiring a single k-space line for every frame in a motion period before acquisition of another line with a different phase-encode gradient in the succeeding motion period. The reconstructed time-course images accurately represented the objects’ displacements with temporal resolutions up to 5.5 ms. The proposed method can drastically increase the temporal resolution of MRI for imaging rapid periodic motion of objects while preserving adequate spatial resolution for internal details when their movements are driven by a reliable motion-inducing mechanism.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Colin G Stirrat ◽  
Shirjel R Alam ◽  
Tom J MacGillivray ◽  
Marc R Dweck ◽  
Peter A Henriksen ◽  
...  

Introduction: Excessive inflammation after myocardial infarction (MI) can be detrimental to the recovery of cardiac function. Ultrasmall superparamagnetic particles of iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI) can detect myocardial cellular inflammation after MI. We aimed to determine the time course and duration of USPIO-enhancement following acute MI. Methods: Twenty-one patients with acute MI were studied in the 3-month period following acute MI. Repeated T2*-weighted 3T MRI was performed throughout and 24 h after USPIO (ferumoxytol, 4 mg/kg) administration at 4±3, 12±2, 21±4 and 90±9 days. Myocardial regions of interest (ROIs) were drawn and categorised into infarct and non-infarct regions by the presence or absence of late gadolinium enhancement (LGE). R2* values within ROIs were determined to assess the time course and duration of uptake and clearance of USPIO. Results: Following single-dose USPIO administration 2-7 days after acute MI, USPIO uptake is demonstrable at 24 h (p<0.0001) and is cleared within 4-8 days (Figure 1a). Increased USPIO uptake is seen in the infarct region at days 2-7 (p<0.0001), and days 10-14 (p<0.05) compared to non-infarcted myocardium (Figure 1b). Conclusions: For the first time, we have shown USPIO-enhanced MRI can detect and quantify infarct-related cellular inflammation in the first 2 weeks following acute MI.


2019 ◽  
Vol 23 (04) ◽  
pp. 405-418 ◽  
Author(s):  
James F. Griffith ◽  
Radhesh Krishna Lalam

AbstractWhen it comes to examining the brachial plexus, ultrasound (US) and magnetic resonance imaging (MRI) are complementary investigations. US is well placed for screening most extraforaminal pathologies, whereas MRI is more sensitive and accurate for specific clinical indications. For example, MRI is probably the preferred technique for assessment of trauma because it enables a thorough evaluation of both the intraspinal and extraspinal elements, although US can depict extraforaminal neural injury with a high level of accuracy. Conversely, US is probably the preferred technique for examination of neurologic amyotrophy because a more extensive involvement beyond the brachial plexus is the norm, although MRI is more sensitive than US for evaluating muscle denervation associated with this entity. With this synergy in mind, this review highlights the tips for examining the brachial plexus with US and MRI.


Endoscopy ◽  
2004 ◽  
Vol 36 (10) ◽  
Author(s):  
BP McMahon ◽  
JB Frøkjær ◽  
A Bergmann ◽  
DH Liao ◽  
E Steffensen ◽  
...  

2019 ◽  
pp. 10-23
Author(s):  
T. A. Akhadov ◽  
S. Yu. Guryakov ◽  
M. V. Ublinsky

For a long time, there was a need to apply magnetic resonance imaging (MRI) technique for lung visualization in clinical practice. The development of this method is stimulated by necessity of the emergence of an alternative to computed tomography, especially when radiation and injection of iodine-containing contrast agents are contraindicated or undesirable, for example, in pregnant women and children, people with intolerance to iodinated contrast. One of the reasons why lung MRI is still rarely used is lack of elaborated standardized protocols that would be adapted to clinical needs of medical society. This publication is a current literature review on the use of MRI in lung studies.


2007 ◽  
Vol 30 (4) ◽  
pp. 41
Author(s):  
A. Dechant

On the morning of October 10, 2003, the residents of New York awoke to find that an entire page of their beloved paper, The Times, had been usurped for the sole purpose of flagrant self-promotion and protestation. On his own behalf, Dr. Raymand Damadian had purchased a one page spread bemoaning his exclusion in the Nobel Prize for Medicine that year which had previously been awarded to Paul Laterbur and Peter Mansfield for their contributions to the development of Magnetic Resonance Imaging (MRI). Over the course of the next few months, the public was to witness a series of such articles proclaiming that a shameful wrong had been committed, and that the truth would eventually prove Dr. Damadian’s accusations. That truth lay in the early theoretical and technical foundations that led to the discovery of MRI. Described just after the Second World War, nuclear magnetic resonance (NMR) was hailed as a breakthrough in physical chemistry for which Felix Bloch and Edward Purcell were awarded the Nobel Prize in Physics in 1952. Two decades later, in 1971, Dr. Damadian discovered that differences between the NMR signals of cancerous and normal tissue might provide a rapid means of cancer detection. However, Laterbur and Mansfield were the first to actually demonstrate images of live tissue using the application of magnetic gradients – the key to modern MRI. Though speculation exists that Dr. Damadian may have been excluded from the prize due to his religious beliefs or political rivalry, only time will reveal the whole truth when the Nobel files are opened 50 years hence. Bradley W. The Nobel Prize: Three Investigators Allowed but Two Were Chosen. Journal of Magnetic Resonance Imaging 2004; 19:520. Laterbur P. Image formation by induced local interactions: examples of employing nuclear magnetic resonance. Nature 1973; 242:190-191. Mansfield P, Grannell P. “NMR diffraction in solids?” Journal of Physics C: Solid State Physics 1973; 63:L433-L426.


Sign in / Sign up

Export Citation Format

Share Document