scholarly journals The comprehensive changes in soil properties are continuous cropping obstacles associated with American ginseng (Panax quinquefolius) cultivation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chongwei Li ◽  
Guozhong Chen ◽  
Jianlong Zhang ◽  
Ping Zhu ◽  
Xinfu Bai ◽  
...  

AbstractThis study aims to verify the time-variant feature of American ginseng (AG) continuous cropping obstacles and to explore the factors impeding continuous cropping. We verified the feature with a plant-soil feedback pot experiment and then investigated the factors by comparing the properties of control soils that had not been previously used for growing ginseng (CS) with those of soils with a 10-year-crop-rotation cycle following the growth of AG (RS). It’s found that the survival rate of AG in RS was lower than that in CS. The RS had lower pH, available potassium content, and urease activity. Additionally, p-coumaric, p-hydroxybenzoic, vanillic, caffeic, and cinnamic acid levels were lower in RS than in CS, but salicylic acid levels showed the opposite pattern. RS had higher Rhodanobacter and lower Acidothermus, Sphingomonas relative abundances in bacterial community. It’s also found that many bacteria were substantially correlated with phenolic acids and soil physiochemical properties. Results indicate that even after 10-year crop rotation, the negative effects of prior continuous cropping of AG has not been eliminated. The growth of AG can be affected negatively with deterioration of soil physicochemical properties and with lower levels of phenolic acids which promote pathogen reproduction. Probiotics reduction also weighs. Moreover, biotic factors are interrelated with abiotic ones. Therefore, it can be inferred that the comprehensive change of soil properties is the main obstacle for continuous cropping.

Author(s):  
Chongwei Li ◽  
Guozhong Chen ◽  
Jianlong Zhang ◽  
Xinfu Bai ◽  
Ping Zhu ◽  
...  

This study aims to verify the time-variant feature of American ginseng (AG) continuous cropping obstacles and to explore the factors impeding continuous cropping. We verified the feature with a plant-soil feedback pot experiment and then investigated the factors by comparing the properties of control soils that had not been previously used for growing ginseng (CS) with those of soils with a 10-year-crop-rotation cycle following the growth of AG (RS). It’s found that the survival rate of AG in RS was lower than that in CS. The RS had lower pH, available potassium content, and urease activity. Additionally, p-coumaric, p-hydroxybenzoic, vanillic, caffeic, and cinnamic acid levels were lower in RS than in CS, but salicylic acid levels showed the opposite pattern. RS had higher Rhodanobacter and lower Acidothermus, Sphingomonas relative abundances in bacterial community. It’s also found that many bacteria were substantially correlated with phenolic acids and soil physiochemical properties. Results indicate that even after 10-year crop rotation, the negative effects of prior continuous cropping of AG has not been eliminated. The growth of AG can be affected negatively with deterioration of soil physicochemical properties and with lower levels of phenolic acids which promote pathogen reproduction. Probiotics reduction also weighs. Moreover, biotic factors are interrelated with abiotic ones. Therefore, it can be inferred that the comprehensive change of soil properties is the main obstacle for continuous cropping.


Author(s):  
Chongwei Li ◽  
Guozhong Chen ◽  
Jianlong Zhang ◽  
Xinfu Bai ◽  
Ping Zhu ◽  
...  

This study aims to verify the time-variant feature of American ginseng (AG) continuous cropping obstacles and to explore the factors impeding continuous cropping. We verified the feature with a plant-soil feedback pot experiment and then investigated the factors by comparing the properties of control soils that had not been previously used for growing ginseng (CS) with those of soils with a 10-year-crop-rotation cycle following the growth of AG (RS). It’s found that the survival rate of AG in RS was lower than that in CS. The RS had lower pH, available potassium content, and urease activity. Additionally, p-coumaric, p-hydroxybenzoic, vanillic, caffeic, and cinnamic acid levels were lower in RS than in CS, but salicylic acid levels showed the opposite pattern. RS had higher Rhodanobacter and lower Acidothermus, Sphingomonas relative abundances in bacterial community. It’s also found that many bacteria were substantially correlated with phenolic acids and soil physiochemical properties. Results indicate that even after 10-year crop rotation, the negative effects of prior continuous cropping of AG has not been eliminated. The growth of AG can be affected negatively with deterioration of soil physicochemical properties and with lower levels of phenolic acids which promote pathogen reproduction. Probiotics reduction also weighs. Moreover, biotic factors are interrelated with abiotic ones. Therefore, it can be inferred that the comprehensive change of soil properties is the main obstacle for continuous cropping.


2018 ◽  
Author(s):  
Zia Mehrabi

Recent work suggests that resource economic traits might help predict the strength and direction of plant-soil feedback interactions, both in natural systems and in agriculture. However, there are many competing hypotheses to explain the effects of plant resource economics on plant-soil feedbacks. Faster-growing plants may have positive fertilizing effects if their tissues are incorporated and mineralized by soil microbes, but may also have negative effects if pathogens build up, or if fungal symbionts are lost through fertilization. Identifying the direction of effects may be confounded if nutrients are exported through herbivory, leaching, or crop harvesting. To determine causality in the effect of plant traits on plant-soil feedbacks it is essential for plant-soil feedback experiments to (1) quantify the mass of nutrients held in standing, or harvested plant biomass, and in losses to other sources in the field, and (2) undertake soil chemistry measurements (e.g. gross and net nitrogen mineralization) of nutrients limiting for plant growth throughout all phases of the feedback cycle. If rigorous nutrient budgeting in plant-soil feedback research is more widely practiced this will provide the data needed to synthesise results in comparable ways, and will enable mechanistic insights into the role of plant traits in mediating plant competition in both natural and applied settings.


2018 ◽  
Author(s):  
Zia Mehrabi

Recent work suggests that resource economic traits might help predict the strength and direction of plant-soil feedback interactions, both in natural systems and in agriculture. However, there are many competing hypotheses to explain the effects of plant resource economics on plant-soil feedbacks. Faster-growing plants may have positive fertilizing effects if their tissues are incorporated and mineralized by soil microbes, but may also have negative effects if pathogens build up, or if fungal symbionts are lost through fertilization. Identifying the direction of effects may be confounded if nutrients are exported through herbivory, leaching, or crop harvesting. To determine causality in the effect of plant traits on plant-soil feedbacks it is essential for plant-soil feedback experiments to (1) quantify the mass of nutrients held in standing, or harvested plant biomass, and in losses to other sources in the field, and (2) undertake soil chemistry measurements (e.g. gross and net nitrogen mineralization) of nutrients limiting for plant growth throughout all phases of the feedback cycle. If rigorous nutrient budgeting in plant-soil feedback research is more widely practiced this will provide the data needed to synthesise results in comparable ways, and will enable mechanistic insights into the role of plant traits in mediating plant competition in both natural and applied settings.


2006 ◽  
Vol 94 (5) ◽  
pp. 893-904 ◽  
Author(s):  
T. MARTIJN BEZEMER ◽  
CLARE S. LAWSON ◽  
KATARINA HEDLUND ◽  
ANDREW R. EDWARDS ◽  
ALEX J. BROOK ◽  
...  

2019 ◽  
Vol 10 ◽  
Author(s):  
Lifen Luo ◽  
Cunwu Guo ◽  
Luotao Wang ◽  
Junxing Zhang ◽  
Linmei Deng ◽  
...  

2021 ◽  
Vol 52 (2) ◽  
pp. 239-250
Author(s):  
X.J. He ◽  
W.W. Zhu ◽  
F.Z. Wu

We studied the effects of 7-crop rotations and continuous - monocropping systems on soil microorganism and its feedback. The results showed that absolute abundance of soil bacteria (Pseudomonas and Bacillus) in tomato - celery - cucumber - cabbage and cucumber - tomato - cucumber - cabbage rotation were significantly higher than control (CK). Absolute abundance of soil fungi in tomato - celery - cucumber - cabbage, kidney bean - celery - cucumber - cabbage, cucumber - kidney bean - cucumber - cabbage and cucumber - tomato - cucumber - cabbage rotation were significantly higher than CK. Dry weight of cucumber seedlings was significantly positively correlated with bacterial (Pseudomonas and Bacillus) abundance, and negatively correlated with fungal count. The results of inoculation with Fusarium oxysporum f.sp. cucumerinum showed that plant dry weight of cucumber seedlings in tomato - celery - cucumber - cabbage, cucumber - kidney bean - cucumber - cabbage, cucumber - tomato - cucumber - cabbage rotation soil was significantly higher than other treatments, and their disease index was significantly lower than other treatments. There was no significant difference in dry weight of cucumber seedlings in rotation and CK in the soil sterilization test. The results of plant - soil feedback experiment showed that soil microbial changes caused by different rotation patterns had a positive feedback effect on growth of cucumber seedlings.


Ecology ◽  
2008 ◽  
Vol 89 (8) ◽  
pp. 2154-2164 ◽  
Author(s):  
Brenda B. Casper ◽  
Stephen P. Bentivenga ◽  
Baoming Ji ◽  
Jennifer H. Doherty ◽  
Harry M. Edenborn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document