prairie soils
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 7)

H-INDEX

25
(FIVE YEARS 0)

mSphere ◽  
2021 ◽  
Author(s):  
Carolyn R. Cornell ◽  
Ya Zhang ◽  
Joy D. Van Nostrand ◽  
Pradeep Wagle ◽  
Xiangming Xiao ◽  
...  

Conversion of land alters the physiochemical and biological environments by not only changing the aboveground community, but also modifying the soil environment for viruses and microbes. Soil microbial communities are critical to nutrient cycling, carbon mineralization, and soil quality; and viruses are known for influencing microbial abundance, community structure, and evolution.


Author(s):  
Noabur Rahman ◽  
Ryan D. Hangs ◽  
Derek Peak ◽  
Jeff Schoenau

The general incidence of copper (Cu), zinc (Zn), and boron (B) deficiencies in soils of the Canadian prairies may be related to identifiable, highly variable inherent soil attributes. The objective of this study was to investigate the variability of selected properties, and their relationship with the bioavailability, forms and distribution of Cu, Zn, and B in a range of prairie soils. The nature of these micronutrient distribution was evaluated by measuring extractable concentrations, supply rates, and separation into various chemical pools through sequential extraction and spectroscopic speciation analyses. Soil pH was found to be the least variable property (CV= < 13%) while carbonate content was most variable (CV= >130%). The Cu and B availability showed strong negative correlation with the sand content in all soils. Path coefficient results indicated that organic carbon had the highest positive direct effect on availability and supply of Cu and B in Grey soils. Extractable Zn was positively correlated with organic carbon content of Brown and Dark Brown soils. Overall, high sand content and low organic matter were identified as important soil properties contributing to deficiency of Cu, Zn, and B. The major proportion of Cu, Zn, and B was found in the recalcitrant residual fraction (59-88%), with the smallest proportions in labile soluble, exchangeable forms (2-8%). The X-ray absorption near edge structure (XANES) revealed that Cu and Zn associated with carbonate minerals were dominant forms of these micronutrients present in all soils. Chemisorption is likely a major process regulating the bioavailability of Cu and Zn in prairie soils.


2020 ◽  
Vol 100 (4) ◽  
pp. 453-462
Author(s):  
B.M.R. Shahidi ◽  
M. Dyck ◽  
S.S. Malhi ◽  
D. Puurveen

The reduction in net CO2 emissions from increased carbon sequestration in soil and slower decomposition of soil organic matter under most long-term no-till (NT) situations can potentially be offset by a concomitant increase in nitrous oxide (N2O) emissions after tillage reversal on long-term NT soils. The objective of this work was to quantify N2O emissions after tillage reversal on two contrasting western Canadian Prairie soils managed under long-term (∼30 yr) NT. We measured one growing season (2010) of soil N2O emissions on a Black Chernozem and Gray Luvisol at Ellerslie and Breton, AB, respectively, following 30 yr of NT and N fertilizer application at two rates (0 and 100 kg N ha−1) subjected to tillage reversal and no disturbance (i.e., continuing NT). Tillage reversal after long-term NT was associated with higher N2O emissions in both soils but was significant only in the Gray Luvisol with 0 kg N ha−1. Long-term N fertilizer applications of 100 kg N ha−1 were associated with higher growing season soil N2O emissions and higher levels of soil N (i.e., a positive, long-term soil N balance) at both sites. Regardless of tillage, the difference in growing season nitrous oxide emissions from the 0 and 100 kg N ha−1 plots on the Gray Luvisol were much greater than the Black Chernozem. A modest increase in N2O emissions upon tillage reversal on a long-term NT soils could translate to a significant increase to agricultural greenhouse gas inventories in the event of large-scale tillage reversal on agricultural land in western Canada.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Noabur Rahman ◽  
Jeff Schoenau

Abstract A polyhouse study was conducted to evaluate the relative effectiveness of different micronutrient fertilizer formulation and application methods on wheat, pea and canola, as indicated by yield response and fate of micronutrients in contrasting mineral soils. The underlying factors controlling micronutrient bioavailability in a soil–plant system were examined using chemical and spectroscopic speciation techniques. Application of Cu significantly improved grain and straw biomass yields of wheat on two of the five soils (Ukalta and Sceptre), of which the Ukalta soil was critically Cu deficient according to soil extraction with DTPA. The deficiency problem was corrected by either soil or foliar application of Cu fertilizers. There were no significant yield responses of pea to Zn fertilization on any of the five soils. For canola, soil placement of boric acid was effective in correcting the deficiency problem in Whitefox soil, while foliar application was not. Soil extractable Cu, Zn, and B concentration in post-harvest soils were increased with soil placement of fertilizers, indicating that following crops in rotation could benefit from this application method. The chemical and XANES spectroscopic speciation indicates that carbonate associated is the dominant form of Cu and Zn in prairie soils, where chemisorption to carbonates is likely the major process that determines the fate of added Cu and Zn fertilizer.


2020 ◽  
Vol 28 (S4) ◽  
Author(s):  
Emily Grman ◽  
Jamie Allen ◽  
Emily Galloway ◽  
Justin McBride ◽  
Jonathan T. Bauer ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. e0223779
Author(s):  
Daniel C. Schlatter ◽  
Zewei Song ◽  
Patricia Vaz-Jauri ◽  
Linda L. Kinkel

Sign in / Sign up

Export Citation Format

Share Document