scholarly journals Land use and land cover change detection and spatial distribution on the Tibetan Plateau

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuang Hao ◽  
Fengshun Zhu ◽  
Yuhuan Cui

AbstractRegarded as the third pole of the Earth, the Tibetan Plateau (TP) is a region with complex terrain. Vegetation is widely distributed in the southeastern part of the plateau. However, the land use and land cover changes (LULCC) on the TP have not been sufficiently studied. In this study, we propose a method of studying the dynamic changes in the land cover on the TP. Landsat OLI images (2013 and 2015) were selected to extract the LULCC information of Nyingchi County, the DEM was used to extract objects’ land curved surface area and analyze their three-dimensional dynamic change information, which realized a four-dimensional monitoring of the forestry information on time and spatial level. The results showed that the forest area in 2015 decreased by 7.25%, of which the coniferous forest areas decreased by 25.14%, broad-leaved forest areas increased by 12.65%, and shrubbery areas increased by 14.62%. Compared with traditional LULCC detection methods, the change detection is no longer focused on the two-dimensional space, which helps determine the three-dimensional land use and land cover changes and their distribution. Thus, dynamic spatial changes can be observed. This study provides scientific support for the vegetation restoration and natural resource management on the TP.

2009 ◽  
Vol 94 (1-2) ◽  
pp. 47-61 ◽  
Author(s):  
Xuefeng Cui ◽  
Hans-F. Graf

Author(s):  
Kaisheng Luo ◽  
Fu-lu Tao ◽  
Juana P. Moiwo

This study compared two object-oriented land use change detection methods—detection after classification (DAC) and classification after detection (CAD) —based on a digital elevation model, slope data, and multi-temporal Landsat images (TM image for 2000 and ETM image for 2010). We noted that the overall accuracy of the DAC (86.42%) was much higher than that of the CAD (71.71%). However, a slight difference between the accuracies of the two methods exists for deciduous broadleaf forest, evergreen coniferous forest, mixed wood, upland, paddy, reserved land, and settlement. Owing to substantial spectrum differences, these land use types can be extracted using spectral indexes. The accuracy of DAC was much higher than that of CAD for industrial land, traffic land, green shrub, reservoir, lake, river, and channel, all of which share similar spectrums. The discrepancy was mainly because DAC can completely utilize various forms of information apart from spectrum information during a two-stage classification. In addition, the change-area boundary was not limited at first, but was adjustable in the process of classification. DAC can overcome smoothing effects to a great extent using multi-scale segmentations and multi-characters in detection. Although DAC yielded better results, it was more time-consuming (28 days) because it uses a two-stage classification approach. Conversely, CAD consumed less time (15 days). Thus, a hybrid of the two methods is recommended for application in land use change detection.


Author(s):  
H. Bilyaminu ◽  
P. Radhakrishnan ◽  
K. Vidyasagaran ◽  
K. Srinivasan

Understanding forest degradation due to human and natural phenomena is crucial to conserving and managing remnant forest resources. However, forest ecosystem assessment over a large and remote area is usually complex and arduous. The present study on land use and land cover change detection of the Shendurney Wildlife Sanctuary forest ecosystems was carried out to utilize the potential application of remote sensing (RS) and geographic information system (GIS). Moreover, to understand the trend in the forest ecosystem changes. The supervised classification with Maximum Likelihood Algorithm and change detection comparison approach was employed to study the land use and land cover changes, using the Landsat Enhanced Thematic Mapper (ETM±) and Landsat 8 OLI-TIRS using data captured on July 01, 2001, and January 14, 2018. The study indicated the rigorous land cover changes. It showed a significant increase in the proportion of degraded forest with negligible gain in the proportion of evergreen forest from 21.31% in 2001 to 22.97% in 2018.  A substantial loss was also observed in moist deciduous from 27.11 % in 2001 to 17.23 % in 2018. The result of the current study indicated the degree of impacts on forests from the various activities of their surroundings. This study provides baseline information for planning and sustainable management decisions.


2020 ◽  
Author(s):  
Pei Liu ◽  
Ruimei Han ◽  
Leiku Yang

<p>Rapid urbanization has become a major urban sustainability concern due to environmental impacts, such as development of urban heat island (UHI) and the reduction of urban security states. To date, most research on urban sustainability development has focus on dynamic change monitoring or UHI state characterization. While there is little literature on UHI change analysis. In addition, there has been little research on the impact of land use and land cover changes (LULCCs) on UHI, especially simulates future trend of LULCCs, UHI change, and dynamic relationship of LULCCs and UHI. The purpose of this research is to design a remote sensing based framework that investigates and analysis that how the LULCCs in the process of urbanization affected thermal environment. In order to assesses and predicts impact of LULCCs on urban heat environment, multi-temporal remotely sensed data from 1986 to 2016 were selected as source data, and Geographic Information System (GIS) methods such as CA-Markov model were employed to construct the proposed framework. The results shown that (1) there has been a substantial strength of urban expansion during the 40 years study period; (2) the most far distance urban center of gravity movement from north-northeast (NEE) to west-southwest (WSW) direction; (3) the dominate temperature were middle level, sub-high level and high level in the research area; (4) there was a higher changing frequency and range from east to west; (5) there was significant negative correlation between land surface temperature and vegetation, and significant positive correlation between temperature and human settlement.</p>


The Holocene ◽  
2009 ◽  
Vol 20 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Ulrike Herzschuh ◽  
H. John B. Birks ◽  
Jian Ni ◽  
Yan Zhao ◽  
Hongyan Liu ◽  
...  

2020 ◽  
Vol 742 ◽  
pp. 140570 ◽  
Author(s):  
Dan Li ◽  
Peipei Tian ◽  
Hongying Luo ◽  
Tiesong Hu ◽  
Bin Dong ◽  
...  

2020 ◽  
Vol 66 (3) ◽  
pp. 298-305
Author(s):  
Kaushalendra Prakash Goswami ◽  
◽  
Sushil Kumar Yadav ◽  
Himanshu Shekher ◽  
◽  
...  

The rapid growth of population, urbanization, economic activities and natural phenomena have affected and simultaneously changed the land use land cover pattern. The main aim of this study is to gain a quantitative understanding of land use land cover changes in Chandauli district from 2000 to 2019. The maximum likelihood supervised classication in ERDAS imagine and ARC GIS software is applied in this study for the preparation of land use land cover maps and analysis of the pattern of land cover through satellite data for the years 2000, 2010 and 2019. The classication of land use land cover is divided into nine major classes i.e. water bodies, sand, cropland, built-up land, fallow land, wasteland, dense forest, open forest and scrub forest. Change detection analysis was also included in this analysis. The general pattern of LULC in this area includes an expansion of Fallow land (18.31 per cent), built-up land (13.43 per cent), open forest and water bodies as well as a reduction in the wasteland (12.59 percent) and dense forest areas in the reference period (2000-2019). The result also indicates that the dominating forest cover exists in southern Chandauli district. The mapping of land use land cover classes is also helpful in the study of change detection and natural resource management.


Author(s):  
Raj Singh Bhanwar Vishvendra ◽  
Anjan Sen

Abstract In the near future, natural resources are very rapidly diminishing all over the globe. Which is very unhealthy for land ecosystem services. In the biodiversity, Tiger is an icon of healthy wildlife which is considered as a vital factor for maintaining Universal Food Chain System. This research paper is based on “Geo-Spatial Mapping of land use and land cover changes in the Core and Periphery Area of Ranthambore Tiger Reserve, Rajasthan, India, 1975-2015, it’s a micro level Study based on primary and secondary data through GIS mapping and consider as a Socio-Economic & Physical factors to inter-connect with Tiger habitats. Especially, core and periphery LULC have been obtained from the Multispectral images from ETM and ETM+ sensors of Landsat and LISS-III and AWiFS sensors of Resourcesat-satellites. This study examines the spatial and temporal patterns of LULC change along the boundary of Ranthambhore in the Rajasthan from 1975 to 2015. Tiger Landscape change within all ecological zones will be evaluated. The Landsat TM and ETM imagery will be used to produce LULC classification maps for both areas using a hybrid supervised/unsupervised methods. LULC changes are measured using landscape metrics and change maps created by post-classification through change detection. Using all the raster maps and the final change detection of the reserve will be done through spatial analysis using the raster calculator tool in ArcGIS and Erdas and MS Excel 13. The study comes out with land use and land cover change in core and periphery areas of the reserve. The research also describes Human Encroachment, Impact on human colonization, interfere with domestic animals, Interbreeding, and the Migration in core and periphery areas, finally, the situation would be alarming for biodiversity of tiger habitat due to the high pressure of anthropogenic activities.


Sign in / Sign up

Export Citation Format

Share Document