Land-Use/Land-Cover Changes and Their Influence on Urban Thermal Environment in Zhengzhou City During the Period of 1986 to 2026

Author(s):  
Pei Liu ◽  
Ruimei Han ◽  
Leiku Yang

<p>Rapid urbanization has become a major urban sustainability concern due to environmental impacts, such as development of urban heat island (UHI) and the reduction of urban security states. To date, most research on urban sustainability development has focus on dynamic change monitoring or UHI state characterization. While there is little literature on UHI change analysis. In addition, there has been little research on the impact of land use and land cover changes (LULCCs) on UHI, especially simulates future trend of LULCCs, UHI change, and dynamic relationship of LULCCs and UHI. The purpose of this research is to design a remote sensing based framework that investigates and analysis that how the LULCCs in the process of urbanization affected thermal environment. In order to assesses and predicts impact of LULCCs on urban heat environment, multi-temporal remotely sensed data from 1986 to 2016 were selected as source data, and Geographic Information System (GIS) methods such as CA-Markov model were employed to construct the proposed framework. The results shown that (1) there has been a substantial strength of urban expansion during the 40 years study period; (2) the most far distance urban center of gravity movement from north-northeast (NEE) to west-southwest (WSW) direction; (3) the dominate temperature were middle level, sub-high level and high level in the research area; (4) there was a higher changing frequency and range from east to west; (5) there was significant negative correlation between land surface temperature and vegetation, and significant positive correlation between temperature and human settlement.</p>

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Pei Liu ◽  
Shoujun Jia ◽  
Ruimei Han ◽  
Yuanping Liu ◽  
Xiaofeng Lu ◽  
...  

Rapid urbanization has become a major urban sustainability concern due to environmental impacts, such as the development of urban heat island (UHI) and the reduction of urban security states. To date, most research on urban sustainability development has focused on dynamic change monitoring or UHI state characterization, while there is little literature on UHI change analysis. In addition, there has been little research on the impact of land use and land cover changes (LULCCs) on UHI, especially simulates future trends of LULCCs, UHI change, and dynamic relationship of LULCCs and UHI. The purpose of this research is to design a remote sensing-based framework that investigates and analyzes how the LULCCs in the process of urbanization affected thermal environment. In order to assess and predict the impact of LULCCs on urban heat environment, multitemporal remotely sensed data from 1986 to 2016 were selected as source data, and Geographic Information System (GIS) methods such as the CA-Markov model were employed to construct the proposed framework. The results showed that (1) there has been a substantial strength of urban expansion during the 40-year study period, (2) the farthest distance urban center of gravity moves from north-northeast (NEE) to west-southwest (WSW) direction, (3) the dominate temperature was middle level, sub-high level, and high level in the research area, (4) there was a higher changing frequency and range from east to west, and (5) there was a significant negative correlation between land surface temperature and vegetation and significant positive correlation between temperature and human settlement.


Climate ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 99 ◽  
Author(s):  
Dissanayake ◽  
Morimoto ◽  
Ranagalage ◽  
Murayama

An urban heat island (UHI) is a phenomenon that shows a higher temperature in urban areas compared to surrounding rural areas due to the impact of impervious surface (IS) density, and other anthropogenic activities including changes of land use/land cover (LULC). The purpose of this research is to examine the spatiotemporal land-use/land-cover changes and their impact on the surface UHI (SUHI) in Kandy City, Sri Lanka, using Landsat data and geospatial techniques. LULC classification was made by using a pixel-oriented supervised classification method, and LULC changes were computed by using a cross-cover comparison. The SUHI effect was discussed mainly through the variation of land-surface temperature (LST) over persistent IS and newly added IS. The study showed the dynamics of each LULC and its role in the SUHI. The results showed that IS areas expanded from 529 to 1514 ha (2.3% to 6.7% of the total land area) between 1996 and 2006, and to 5833 ha (23.9% of the total land area) in 2017, with an annual growth rate of 11.1% per year from 1996 to 2006 and 12.2% per year from 2006 to 2017. A gradually declining trend was observed in forest areas. Persistent IS reported the highest mean LST areas compared to newly added IS. The mean LST difference between persistent IS and newly added IS was 1.43 °C over the study period. This is because areas of persistent IS are typically surrounded by IS even in their neighborhoods, whereas areas of newly added IS occur at the edges of the city and are, therefore, cooled by the surrounding nonurban surfaces. This calls for appropriate green-oriented landscape-management methods to mitigate the impact of the SUHI in Kandy City. The findings of the study showed that LULC changes and their effect on the SUHI from 1996 to 2017 made a significant contribution to long records of change dynamics.


2021 ◽  
Vol 10 (5) ◽  
pp. 272
Author(s):  
Auwalu Faisal Koko ◽  
Wu Yue ◽  
Ghali Abdullahi Abubakar ◽  
Akram Ahmed Noman Alabsi ◽  
Roknisadeh Hamed

Rapid urbanization in cities and urban centers has recently contributed to notable land use/land cover (LULC) changes, affecting both the climate and environment. Therefore, this study seeks to analyze changes in LULC and its spatiotemporal influence on the surface urban heat islands (UHI) in Abuja metropolis, Nigeria. To achieve this, we employed Multi-temporal Landsat data to monitor the study area’s LULC pattern and land surface temperature (LST) over the last 29 years. The study then analyzed the relationship between LULC, LST, and other vital spectral indices comprising NDVI and NDBI using correlation analysis. The results revealed a significant urban expansion with the transformation of 358.3 sq. km of natural surface into built-up areas. It further showed a considerable increase in the mean LST of Abuja metropolis from 30.65 °C in 1990 to 32.69 °C in 2019, with a notable increase of 2.53 °C between 2009 and 2019. The results also indicated an inverse relationship between LST and NDVI and a positive connection between LST and NDBI. This implies that urban expansion and vegetation decrease influences the development of surface UHI through increased LST. Therefore, the study’s findings will significantly help urban-planners and decision-makers implement sustainable land-use strategies and management for the city.


Author(s):  
Андрій Юрійович Шелестов ◽  
Алла Миколаївна Лавренюк ◽  
Богдан Ялкапович Яйлимов ◽  
Ганна Олексіївна Яйлимова

Ukraine is an associate member of the European Union and in the coming years it is expected that all data and services already used by EU countries will be available to Ukraine. The lack of quality national products for assessing the development and planning of urban growth makes it impossible to assess the impact of cities on the environment and human health. The first steps to create such products for the cities of Ukraine were initiated within the European project "SMart URBan Solutions for air quality, disasters and city growth" (SMURBS), in which specialists from the Space Research Institute of NAS of Ukraine and SSA of Ukraine received the first city atlas for the Kyiv city, which was similar to the European one. However, the resulting product had significantly fewer types of land use than the European one and therefore the question of improving the developed technology arose. The main purpose of the work is to analyze the existing technology of European service Urban Atlas creation and its improvement by developing a unified algorithm for building an urban atlas using all available open geospatial and satellite data for the cities of Ukraine. The development of such technology is based on our own technology for classifying satellite time series with a spatial resolution of 10 meters to build a land cover map, as well as an algorithm for unifying open geospatial data to urban atlases Copernicus. The technology of construction of the city atlas developed in work, based on the intellectual model of classification of a land cover, can be extended to other cities of Ukraine. In the future, the creation of such a product on the basis of data for different years will allow to assess changes in land use and make a forecast for further urban expansion. The proposed information technology for constructing the city atlas will be useful for assessing the dynamics of urban growth and closely related social and economic indicators of their development. Based on it, it is also possible to assess indicators of achieving the goals of sustainable development, such as 11.3.1 "The ratio of land consumption and population growth." The study shows that the city atlas obtained for the Kyiv city has a high level of quality and has comparable land use classes with European products. It indicates that such a product can be used in government decision-making services.


2012 ◽  
Vol 49 (5) ◽  
pp. 980-989 ◽  
Author(s):  
S. Bajocco ◽  
A. De Angelis ◽  
L. Perini ◽  
A. Ferrara ◽  
L. Salvati

Sign in / Sign up

Export Citation Format

Share Document