scholarly journals HDAC6 inhibitors sensitize non-mesenchymal triple-negative breast cancer cells to cysteine deprivation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tahiyat Alothaim ◽  
Morgan Charbonneau ◽  
Xiaohu Tang

AbstractTriple-negative breast cancer (TNBC) is a highly malignant type of breast cancer and lacks effective therapy. Targeting cysteine-dependence is an emerging strategy to treat the mesenchymal TNBC. However, many TNBC cells are non-mesenchymal and unresponsive to cysteine deprivation. To overcome such resistance, three selective HDAC6 inhibitors (Tubacin, CAY10603, and Tubastatin A), identified by epigenetic compound library screening, can synergize with cysteine deprivation to induce cell death in the non-mesenchymal TNBC. Despite the efficacy of HDAC6 inhibitor, knockout of HDAC6 did not mimic the synthetic lethality induced by its inhibitors, indicating that HDAC6 is not the actual target of HDAC6 inhibitor in this context. Instead, transcriptomic profiling showed that tubacin triggers an extensive gene transcriptional program in combination with erastin, a cysteine transport blocker. Notably, the zinc-related gene response along with an increase of labile zinc was induced in cells by the combination treatment. The disturbance of zinc homeostasis was driven by PKCγ activation, which revealed that the PKCγ signaling pathway is required for HDAC6 inhibitor-mediated synthetic lethality. Overall, our study identifies a novel function of HDAC6 inhibitors that function as potent sensitizers of cysteine deprivation and are capable of abolishing cysteine-independence in non-mesenchymal TNBC.

2012 ◽  
Vol 4 (10) ◽  
pp. 1087-1096 ◽  
Author(s):  
Ilirjana Bajrami ◽  
Asha Kigozi ◽  
Antoinette Van Weverwijk ◽  
Rachel Brough ◽  
Jessica Frankum ◽  
...  

2017 ◽  
Vol 12 (1) ◽  
pp. 221-229
Author(s):  
Abeer M. Ashmawy ◽  
Mona A. Sheta ◽  
Faten Zahran ◽  
Abdel Hady A. Abdel Wahab

2021 ◽  
Vol 17 (4) ◽  
pp. 513-522
Author(s):  
Xuye Zhao ◽  
Xiangdong Bai ◽  
Weina Li ◽  
Xuezhen Gao ◽  
Xiaoli Wang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiahui Xu ◽  
Xiaoli Yang ◽  
Qiaodan Deng ◽  
Cong Yang ◽  
Dong Wang ◽  
...  

AbstractEnhanced neovasculogenesis, especially vasculogenic mimicry (VM), contributes to the development of triple-negative breast cancer (TNBC). Breast tumor-initiating cells (BTICs) are involved in forming VM; however, the specific VM-forming BTIC population and the regulatory mechanisms remain undefined. We find that tumor endothelial marker 8 (TEM8) is abundantly expressed in TNBC and serves as a marker for VM-forming BTICs. Mechanistically, TEM8 increases active RhoC level and induces ROCK1-mediated phosphorylation of SMAD5, in a cascade essential for promoting stemness and VM capacity of breast cancer cells. ASB10, an estrogen receptor ERα trans-activated E3 ligase, ubiquitylates TEM8 for degradation, and its deficiency in TNBC resulted in a high homeostatic level of TEM8. In this work, we identify TEM8 as a functional marker for VM-forming BTICs in TNBC, providing a target for the development of effective therapies against TNBC targeting both BTIC self-renewal and neovasculogenesis simultaneously.


Sign in / Sign up

Export Citation Format

Share Document