scholarly journals Comparative transcriptome analyses reveal genes associated with SARS-CoV-2 infection of human lung epithelial cells

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Darshan S. Chandrashekar ◽  
Mohammad Athar ◽  
Upender Manne ◽  
Sooryanarayana Varambally

AbstractDuring 2020, understanding the molecular mechanism of SARS-CoV-2 infection (the cause of COVID-19) became a scientific priority due to the devastating effects of the COVID-19. Many researchers have studied the effect of this viral infection on lung epithelial transcriptomes and deposited data in public repositories. Comprehensive analysis of such data could pave the way for development of efficient vaccines and effective drugs. In the current study, we obtained high-throughput gene expression data associated with human lung epithelial cells infected with respiratory viruses such as SARS-CoV-2, SARS, H1N1, avian influenza, rhinovirus and Dhori, then performed comparative transcriptome analysis to identify SARS-CoV-2 exclusive genes. The analysis yielded seven SARS-CoV-2 specific genes including CSF2 [GM-CSF] (colony-stimulating factor 2) and calcium-binding proteins (such as S100A8 and S100A9), which are known to be involved in respiratory diseases. The analyses showed that genes involved in inflammation are commonly altered by infection of SARS-CoV-2 and influenza viruses. Furthermore, results of protein–protein interaction analyses were consistent with a functional role of CSF2 and S100A9 in COVID-19 disease. In conclusion, our analysis revealed cellular genes associated with SARS-CoV-2 infection of the human lung epithelium; these are potential therapeutic targets.

2020 ◽  
Author(s):  
Darshan S. Chandrashekar ◽  
Upender Manne ◽  
Sooryanarayana Varambally

AbstractUnderstanding the molecular mechanism of SARS-CoV-2 infection (the cause of COVID-19) is a scientific priority for 2020. Various research groups are working toward development of vaccines and drugs, and many have published genomic and transcriptomic data related to this viral infection. The power inherent in publicly available data can be demonstrated via comparative transcriptome analyses. In the current study, we collected high-throughput gene expression data related to human lung epithelial cells infected with SARS-CoV-2 or other respiratory viruses (SARS, H1N1, rhinovirus, avian influenza, and Dhori) and compared the effect of these viruses on the human transcriptome. The analyses identified fifteen genes specifically expressed in cells transfected with SARS-CoV-2; these included CSF2 (colony-stimulating factor 2) and S100A8 and S100A9 (calcium-binding proteins), all of which are involved in lung/respiratory disorders. The analyses showed that genes involved in the Type1 interferon signaling pathway and the apoptosis process are commonly altered by infection of SARS-CoV-2 and influenza viruses. Furthermore, results of protein-protein interaction analyses were consistent with a functional role of CSF2 in COVID-19 disease. In conclusion, our analysis has revealed cellular genes associated with SARS-CoV-2 infection of the human lung epithelium; these are potential therapeutic targets.


Pneumologie ◽  
2010 ◽  
Vol 64 (S 03) ◽  
Author(s):  
B Schmeck ◽  
B Dolniak ◽  
I Pollock ◽  
C Schulz ◽  
W Bertrams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document