scholarly journals Multi-scale guided feature extraction and classification algorithm for hyperspectral images

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shiqi Huang ◽  
Ying Lu ◽  
Wenqing Wang ◽  
Ke Sun

AbstractTo solve the problem that the traditional hyperspectral image classification method cannot effectively distinguish the boundary of objects with a single scale feature, which leads to low classification accuracy, this paper introduces the idea of guided filtering into hyperspectral image classification, and then proposes a multi-scale guided feature extraction and classification (MGFEC) algorithm for hyperspectral images. Firstly, the principal component analysis theory is used to reduce the dimension of hyperspectral image data. Then, guided filtering algorithm is used to achieve multi-scale spatial structure extraction of hyperspectral image by setting different sizes of filtering windows, so as to retain more edge details. Finally, the extracted multi-scale features are input into the support vector machine classifier for classification. Several practical hyperspectral image datasets were used to verify the experiment, and compared with other spectral feature extraction algorithms. The experimental results show that the multi-scale features extracted by the MGFEC algorithm proposed in this paper are more accurate than those extracted by only using spectral information, which leads to the improvement of the final classification accuracy. This fully shows that the proposed method is not only effective, but also suitable for processing different hyperspectral image data.

2020 ◽  
Vol 12 (18) ◽  
pp. 2956 ◽  
Author(s):  
Peng Dou ◽  
Chao Zeng

Recently, deep learning has been reported to be an effective method for improving hyperspectral image classification and convolutional neural networks (CNNs) are, in particular, gaining more and more attention in this field. CNNs provide automatic approaches that can learn more abstract features of hyperspectral images from spectral, spatial, or spectral-spatial domains. However, CNN applications are focused on learning features directly from image data—while the intrinsic relations between original features, which may provide more information for classification, are not fully considered. In order to make full use of the relations between hyperspectral features and to explore more objective features for improving classification accuracy, we proposed feature relations map learning (FRML) in this paper. FRML can automatically enhance the separability of different objects in an image, using a segmented feature relations map (SFRM) that reflects the relations between spectral features through a normalized difference index (NDI), and it can then learn new features from SFRM using a CNN-based feature extractor. Finally, based on these features, a classifier was designed for the classification. With FRML, our experimental results from four popular hyperspectral datasets indicate that the proposed method can achieve more representative and objective features to improve classification accuracy, outperforming classifications using the comparative methods.


2021 ◽  
Vol 13 (3) ◽  
pp. 335
Author(s):  
Yuhao Qing ◽  
Wenyi Liu

In recent years, image classification on hyperspectral imagery utilizing deep learning algorithms has attained good results. Thus, spurred by that finding and to further improve the deep learning classification accuracy, we propose a multi-scale residual convolutional neural network model fused with an efficient channel attention network (MRA-NET) that is appropriate for hyperspectral image classification. The suggested technique comprises a multi-staged architecture, where initially the spectral information of the hyperspectral image is reduced into a two-dimensional tensor, utilizing a principal component analysis (PCA) scheme. Then, the constructed low-dimensional image is input to our proposed ECA-NET deep network, which exploits the advantages of its core components, i.e., multi-scale residual structure and attention mechanisms. We evaluate the performance of the proposed MRA-NET on three public available hyperspectral datasets and demonstrate that, overall, the classification accuracy of our method is 99.82 %, 99.81%, and 99.37, respectively, which is higher compared to the corresponding accuracy of current networks such as 3D convolutional neural network (CNN), three-dimensional residual convolution structure (RES-3D-CNN), and space–spectrum joint deep network (SSRN).


2021 ◽  
Vol 13 (22) ◽  
pp. 4621
Author(s):  
Dongxu Liu ◽  
Guangliang Han ◽  
Peixun Liu ◽  
Hang Yang ◽  
Xinglong Sun ◽  
...  

Multifarious hyperspectral image (HSI) classification methods based on convolutional neural networks (CNN) have been gradually proposed and achieve a promising classification performance. However, hyperspectral image classification still suffers from various challenges, including abundant redundant information, insufficient spectral-spatial representation, irregular class distribution, and so forth. To address these issues, we propose a novel 2D-3D CNN with spectral-spatial multi-scale feature fusion for hyperspectral image classification, which consists of two feature extraction streams, a feature fusion module as well as a classification scheme. First, we employ two diverse backbone modules for feature representation, that is, the spectral feature and the spatial feature extraction streams. The former utilizes a hierarchical feature extraction module to capture multi-scale spectral features, while the latter extracts multi-stage spatial features by introducing a multi-level fusion structure. With these network units, the category attribute information of HSI can be fully excavated. Then, to output more complete and robust information for classification, a multi-scale spectral-spatial-semantic feature fusion module is presented based on a Decomposition-Reconstruction structure. Last of all, we innovate a classification scheme to lift the classification accuracy. Experimental results on three public datasets demonstrate that the proposed method outperforms the state-of-the-art methods.


2021 ◽  
Vol 72 (1) ◽  
pp. 40-45
Author(s):  
Guang Yi Chen

Abstract Hyperspectral imagery can offer images with high spectral resolution and provide a unique ability to distinguish the subtle spectral signatures of different land covers. In this paper, we develop a new algorithm for hyperspectral image classification by using principal component analysis (PCA) and support vector machines (SVM). We use PCA to reduce the dimensionality of an HSI data cube, and then perform spatial convolution with three different filters on the PCA output cube. We feed all three convolved output cubes to SVM to classify every pixel. Finally, we perform fusion on the three output maps to determine the final classification map. We conduct experiments on three widely used hyperspectral image data cubes (ie indian pines, pavia university, and salinas). Our method can improve the classification accuracy significantly when compared to several existing methods. Our novel method is relatively fast in term of CPU computational time as well.


Author(s):  
Pai-Hui Hsu

The idea of using artificial neural network has been proven useful for hyperspectral image classification. However, the high dimensionality of hyperspectral images usually leads to the failure of constructing an effective neural network classifier. To improve the performance of neural network classifier, wavelet-based feature extraction algorithms can be applied to extract useful features for hyperspectral image classification. However, the extracted features with fixed position and dilation parameters of the wavelets provide insufficient characteristics of spectrum. In this study, wavelet networks which integrates the advantages of wavelet-based feature extraction and neural networks classification is proposed for hyperspectral image classification. Wavelet networks is a kind of feed-forward neural networks using wavelets as activation function. Both the position and the dilation parameters of the wavelets are optimized as well as the weights of the network during the training phase. The value of wavelet networks lies in their capabilities of optimizing network weights and extracting essential features simultaneously for hyperspectral images classification. In this study, the influence of the learning rate and momentum term during the network training phase is presented, and several initialization modes of wavelet networks were used to test the performance of wavelet networks.


Author(s):  
Pai-Hui Hsu

The idea of using artificial neural network has been proven useful for hyperspectral image classification. However, the high dimensionality of hyperspectral images usually leads to the failure of constructing an effective neural network classifier. To improve the performance of neural network classifier, wavelet-based feature extraction algorithms can be applied to extract useful features for hyperspectral image classification. However, the extracted features with fixed position and dilation parameters of the wavelets provide insufficient characteristics of spectrum. In this study, wavelet networks which integrates the advantages of wavelet-based feature extraction and neural networks classification is proposed for hyperspectral image classification. Wavelet networks is a kind of feed-forward neural networks using wavelets as activation function. Both the position and the dilation parameters of the wavelets are optimized as well as the weights of the network during the training phase. The value of wavelet networks lies in their capabilities of optimizing network weights and extracting essential features simultaneously for hyperspectral images classification. In this study, the influence of the learning rate and momentum term during the network training phase is presented, and several initialization modes of wavelet networks were used to test the performance of wavelet networks.


Author(s):  
Hariharan S Et al.

Feature extraction is a crucial step in Hyperspectral Image classification that aids in processing data effectively without losing relevant information. This step is essential when dealing with images with high dimensions because they suffer from Hughes phenomenon or the curse of high dimensionality. This phenomenon occurs in high dimensional datasets where the number of training samples is limited. In this paper, we have studied the influence of feature extraction techniques in HSI classification. We have compared the efficiency of three widely used techniques, namely Principal Component Analysis, t- Stochastic Neighbor Embedding and Convolutional Neural Network. Overall classification accuracy for PCA when used with KNN, a commonly used classification algorithm was found to be 69.79% while t-SNE with KNN was 71.04%. When CNN was used for feature extraction, its outperformed t-SNE and PCA with a wide margin with classification accuracy reaching as high as 95.06%.


Sign in / Sign up

Export Citation Format

Share Document