hyperspectral image data
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 17)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shiqi Huang ◽  
Ying Lu ◽  
Wenqing Wang ◽  
Ke Sun

AbstractTo solve the problem that the traditional hyperspectral image classification method cannot effectively distinguish the boundary of objects with a single scale feature, which leads to low classification accuracy, this paper introduces the idea of guided filtering into hyperspectral image classification, and then proposes a multi-scale guided feature extraction and classification (MGFEC) algorithm for hyperspectral images. Firstly, the principal component analysis theory is used to reduce the dimension of hyperspectral image data. Then, guided filtering algorithm is used to achieve multi-scale spatial structure extraction of hyperspectral image by setting different sizes of filtering windows, so as to retain more edge details. Finally, the extracted multi-scale features are input into the support vector machine classifier for classification. Several practical hyperspectral image datasets were used to verify the experiment, and compared with other spectral feature extraction algorithms. The experimental results show that the multi-scale features extracted by the MGFEC algorithm proposed in this paper are more accurate than those extracted by only using spectral information, which leads to the improvement of the final classification accuracy. This fully shows that the proposed method is not only effective, but also suitable for processing different hyperspectral image data.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jian Zhou ◽  
Zhuping Wang ◽  
Yingjie Jiao ◽  
Cong Nie

Hyperspectral information can be used to express the material properties of objects, which has a strong effect on camouflage recognition. However, it is difficult to process it directly because of the huge hyperspectral image data. Therefore, this paper proposes a new band selection algorithm to achieve band selection by simulating visual perception. The subspace clustering self-attention adversarial network is constructed to realize the initial selection of band. According to the visual chromatic aberration principle, a model is constructed to determine the band that combines the strongest response intensity of a particular material, and then this band is selected as the final band, therefore realizing the algorithm of material demarcation in this way.


2021 ◽  
Vol 10 (4) ◽  
pp. 242
Author(s):  
Shiuan Wan ◽  
Mei Ling Yeh ◽  
Hong Lin Ma

Generation of a thematic map is important for scientists and agriculture engineers in analyzing different crops in a given field. Remote sensing data are well-accepted for image classification on a vast area of crop investigation. However, most of the research has currently focused on the classification of pixel-based image data for analysis. The study was carried out to develop a multi-category crop hyperspectral image classification system to identify the major crops in the Chiayi Golden Corridor. The hyperspectral image data from CASI (Compact Airborne Spectrographic Imager) were used as the experimental data in this study. A two-stage classification was designed to display the performance of the image classification. More specifically, the study used a multi-class classification by support vector machine (SVM) + convolutional neural network (CNN) for image classification analysis. SVM is a supervised learning model that analyzes data used for classification. CNN is a class of deep neural networks that is applied to analyzing visual imagery. The image classification comparison was made among four crops (paddy rice, potatoes, cabbages, and peanuts), roads, and structures for classification. In the first stage, the support vector machine handled the hyperspectral image classification through pixel-based analysis. Then, the convolution neural network improved the classification of image details through various blocks (cells) of segmentation in the second stage. A series of discussion and analyses of the results are presented. The repair module was also designed to link the usage of CNN and SVM to remove the classification errors.


2021 ◽  
Vol 72 (1) ◽  
pp. 40-45
Author(s):  
Guang Yi Chen

Abstract Hyperspectral imagery can offer images with high spectral resolution and provide a unique ability to distinguish the subtle spectral signatures of different land covers. In this paper, we develop a new algorithm for hyperspectral image classification by using principal component analysis (PCA) and support vector machines (SVM). We use PCA to reduce the dimensionality of an HSI data cube, and then perform spatial convolution with three different filters on the PCA output cube. We feed all three convolved output cubes to SVM to classify every pixel. Finally, we perform fusion on the three output maps to determine the final classification map. We conduct experiments on three widely used hyperspectral image data cubes (ie indian pines, pavia university, and salinas). Our method can improve the classification accuracy significantly when compared to several existing methods. Our novel method is relatively fast in term of CPU computational time as well.


Agriculture ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 465
Author(s):  
Shiuan Wan ◽  
Yi-Ping Wang

The analysis, measurement, and computation of remote sensing images often require enhanced unsupervised/supervised classification approaches. The goal of this study is to have a better understanding of (a) the classification performance of multispectral image and hyperspectral image data; (b) the classification performance of unsupervised and supervised models; and (c) the classification performance of feature selection among different models. More specifically, the multispectral images and hyperspectral images with high spatial resolution are well accepted for improving land use and classification. Hence, this study used multispectral images (WorldView-2) and hyperspectral images (CASI-1500) and focused on the classifiers K-means, density-based spatial clustering of applications with noise (DBSCAN), linear discriminant analysis (LDA), and back-propagation neural network (BPN). Then the feature selection (principle component analysis, PCA) on four classifiers is studied. The results show that the image material of CASI-1500 classification accuracy is slightly better than that of WorldView-2. The overall classification of BPN is the best, the overall data has a κ value of 0.89 and the overall accuracy is 97%. The DBSCAN presents a reality with good accuracy and the integrity of the thematic map. The DBSCAN can attain an accuracy of about 88% and save 95.1% of computational time.


Sign in / Sign up

Export Citation Format

Share Document