scholarly journals Effect of constant collision mean free time on the boundary layer of the active collisional warm plasma

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mansour Khoram ◽  
S. Farhad Masoudi

AbstractThe plasma boundary layer is analyzed for a plasma in contact with a conducting plain surface where the ion temperature is comparable with the electron temperature and the plasma pressure is sufficiently high. The variations of electrical potential from the plasma-presheath boundary to the wall is studied using the fluidal formalism of plasma in three approaches; plasma and sheath asymptotic solutions and full solution. In the full solution approach, fluidal equations lead to a singularity when the ion velocity reaches the ion thermal speed. It is shown that removing the singularity causes a well-defined eigenvalue problem and leads to smooth solutions for the model equations. Some of the applicable aspects such as the floating velocity and density of ions, the floating electrical potential and an estimation of the floating thickness of the boundary layer are obtained. The dependency of these quantities on the ionization degree, the ion temperature and ion-neutral collision is examined too.

1994 ◽  
Vol 60 (573) ◽  
pp. 1792-1799
Author(s):  
Ken Okazaki ◽  
Yukihiko Okumura ◽  
Masanori Kokumai ◽  
Norihiko Yoshikawa

2018 ◽  
Vol 84 (6) ◽  
Author(s):  
K. Aleynikova ◽  
A. Zocco ◽  
P. Xanthopoulos ◽  
P. Helander ◽  
C. Nührenberg

Kinetic ballooning modes (KBMs) are investigated by means of linear electromagnetic gyrokinetic (GK) simulations in the stellarator Wendelstein 7-X (W7-X), for high-$\unicode[STIX]{x1D6FD}$ plasmas, where $\unicode[STIX]{x1D6FD}$ is the ratio of thermal to magnetic plasma pressure. The analysis shows suppression of ion-temperature-gradient (ITG) and trapped particle modes (TEM) by finite-$\unicode[STIX]{x1D6FD}$ effects and destabilization of KBMs at high $\unicode[STIX]{x1D6FD}$. The results are compared with a generic tokamak case. We show that, for large pressure gradients, the frequency of KBMs evaluated by the GENE code is in agreement with the analytical prediction of the diamagnetic modification of the ideal magnetohydrodynamic limit in W7-X general geometry. Thresholds for destabilization of the KBM are predicted for different W7-X equilibrium configurations. We discuss the relation of these thresholds to the ideal magnetohydrodynamic (MHD) stability properties of the corresponding equilibria.


A set of model equations is given to describe the gross features of a statistically steady or 'slowly varying’ inhomogeneous field of turbulence and the mean velocity distribution. The equations are based on the idea that turbulence can be characterized by ‘densities’ which obey nonlinear diffusion equations. The diffusion equations contain terms to describe the convection by the mean flow, the amplification due to interaction with a mean velocity gradient, the dissipation due to the interaction of the turbulence with itself, and the dif­fusion also due to the self interaction. The equations are similar to a set proposed by Kolmo­gorov (1942). It is assumed that both an ‘energy density’ and a ‘vorticity density’ satisfy diffusion equations, and that the self diffusion is described by an eddy viscosity which is a function of the energy and vorticity densities; the eddy viscosity is also assumed to describe the diffu­sion of mean momentum by the turbulent fluctuations. It is shown that with simple and plausible assumptions about the nature of the interaction terms, the equations form a closed set. The appropriate boundary conditions at a solid wall and a turbulent interface, with and without entrainment, are discussed. It is shown that the dimensionless constants which appear in the equations can all be estimated by general arguments. The equations are then found to predict the von Kármán constant in the law of the wall with reasonable accuracy. An analytical solution is given for Couette flow, and the result of a numerical study of plane Poiseuille flow is described. The equations are also applied to free turbulent flows. It is shown that the model equations completely determine the structure of the similarity solutions, with the rate of spread, for instance, determined by the solution of a nonlinear eigenvalue problem. Numerical solutions have been obtained for the two-dimensional wake and jet. The agreement with experiment is good. The solutions have a sharp interface between turbulent and non-turbulent regions and the mean velocity in the turbulent part varies linearly with distance from the interface. The equations are applied qualitatively to the accelerating boundary layer in flow towards a line sink, and the decelerating boundary layer with zero skin friction. In the latter case, the equations predict that the mean velocity should vary near the wall like the 5/3 power of the distance. It is shown that viscosity can be incorporated formally into the model equations and that a structure can be given to the interface between turbulent and non-turbulent parts of the flow.


Sign in / Sign up

Export Citation Format

Share Document