ideal magnetohydrodynamic
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 27)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 922 (2) ◽  
pp. 201
Author(s):  
Haifeng Yang ◽  
Xue-Ning Bai

Abstract It has recently been established that the evolution of protoplanetary disks is primarily driven by magnetized disk winds, requiring a large-scale magnetic flux threading the disks. The size of such disks is expected to shrink with time, as opposed to the conventional scenario of viscous expansion. We present the first global 2D non-ideal magnetohydrodynamic simulations of protoplanetary disks that are truncated in the outer radius, aiming to understand the interaction of the disk with the interstellar environment, as well as the global evolution of the disk and magnetic flux. We find that as the system relaxes, the poloidal magnetic field threading the disk beyond the truncation radius collapses toward the midplane, leading to a rapid reconnection. This process removes a substantial amount of magnetic flux from the system and forms closed poloidal magnetic flux loops encircling the outer disk in quasi-steady state. These magnetic flux loops can drive expansion beyond the truncation radius, corresponding to substantial mass loss through a magnetized disk outflow beyond the truncation radius analogous to a combination of viscous spreading and external photoevaporation. The magnetic flux loops gradually shrink over time, the rates of which depend on the level of disk magnetization and the external environment, which eventually governs the long-term disk evolution.


Author(s):  
Carolin Nuehrenberg

Abstract The effect of a subsonic flow, inherent to most stellarators because of a radial electric field, on their ideal magnetohydrodynamic (MHD) stability properties is studied employing the quasi-Lagrangian picture developed by Frieman and Rotenberg [1960 Rev. Mod. Phys. 32, 898]. The Mach number of the perpendicular ExB flow in stellarators is of order 0.01 and, therefore, admits the usage of a subsonic approximation in form of a static equilibrium. A mathematical formulation of the weak form of the stability equation with flow has been implemented in the ideal-MHD stability code CAS3D. This formulation uses magnetic coordinates and does not involve any derivatives across magnetic surfaces. In addition to the expected Doppler shift of frequencies, properties of the spectrum of the ideal MHD force operator, which are already known for tokamaks, but now also shown in the stellarator case, are: firstly, the appearance of unstable flow-induced continua stemming from the coupling of sound and Alfven continuum branches with equal mode numbers; and, secondly, the existence of flow-induced, global, stable modes near extrema of sound continuum branches, the extrema, in turn, being generated by the influence of a sheared flow on the static sound continua.


Author(s):  
Elena Khomenko

Multi-fluid magnetohydrodynamics is an extension of classical magnetohydrodynamics that allows a simplified treatment plasmas with complex chemical mixtures. The types of plasma susceptible to multi-fluid effects are those containing particles with properties significantly different from those of the rest of the plasma in either mass, or electric charge, such as neutral particles, molecules, or dust grains. In astrophysics, multi-fluid magnetohydrodynamics is relevant for planetary ionospheres and magnetospheres, the interstellar medium, and the formation of stars and planets, as well as in the atmospheres of cool stars such as the Sun. Traditionally, magnetohydrodynamics has been a classical approximation in many astrophysical and physical applications. Magnetohydrodynamics works well in dense plasmas where the typical plasma scales (e.g., cyclotron frequencies, Larmor radius) are significantly smaller than the scales of the processes under study. Nevertheless, when plasma components are not well coupled by collisions it is necessary to replace single-fluid magnetohydrodynamics by multi-fluid theory. The present article provides a description of environments in which a multi-fluid treatment is necessary and describes modifications to the magnetohydrodynamic equations that are necessary to treat non-ideal plasmas. It also summarizes the physical consequences of major multi-fluid non-ideal magnetohydrodynamic effects including ambipolar diffusion, the Hall effect, the battery effect, and other intrinsically multi-fluid effects. Multi-fluid theory is an intermediate step between magnetohydrodynamics dealing with the collective behaviour of an ensemble of particles, and a kinetic approach where the statistics of particle distributions are studied. The main assumption of multi-fluid theory is that each individual ensemble of particles behaves like a fluid, interacting via collisions with other particle ensembles, such as those belonging to different chemical species or ionization states. Collisional interaction creates a relative macroscopic motion between different plasma components, which, on larger scales, results in the non-ideal behaviour of such plasmas. The non-ideal effects discussed here manifest themselves in plasmas at relatively low temperatures and low densities.


2020 ◽  
Vol 639 ◽  
pp. A137 ◽  
Author(s):  
M. Kuffmeier ◽  
S. Reissl ◽  
S. Wolf ◽  
I. Stephens ◽  
H. Calcutt

Context. Measuring polarization from thermal dust emission can provide important constraints on the magnetic field structure around embedded protostars. However, interpreting the observations is challenging without models that consistently account for both the complexity of the turbulent protostellar birth environment and polarization mechanisms. Aims. We aim to provide a better understanding of dust polarization maps of embedded protostars with a focus on bridge-like structures such as the structure observed toward the protostellar multiple system IRAS 16293–2422 by comparing synthetic polarization maps of thermal reemission with recent observations. Methods. We analyzed the magnetic field morphology and properties associated with the formation of a protostellar multiple based on ideal magnetohydrodynamic 3D zoom-in simulations carried out with the RAMSES code. To compare the models with observations, we postprocessed a snapshot of a bridge-like structure that is associated with a forming triple star system with the radiative transfer code POLARIS and produced multiwavelength dust polarization maps. Results. The typical density in the most prominent bridge of our sample is about 10−16 g cm−3, and the magnetic field strength in the bridge is about 1 to 2 mG. Inside the bridge, the magnetic field structure has an elongated toroidal morphology, and the dust polarization maps trace the complex morphology. In contrast, the magnetic field strength associated with the launching of asymmetric bipolar outflows is significantly more magnetized (~100 mG). At λ = 1.3 mm, and the orientation of the grains in the bridge is very similar for the case accounting for radiative alignment torques (RATs) compared to perfect alignment with magnetic field lines. However, the polarization fraction in the bridge is three times smaller for the RAT scenario than when perfect alignment is assumed. At shorter wavelength (λ ≲ 200 μm), however, dust polarization does not trace the magnetic field because other effects such as self-scattering and dichroic extinction dominate the orientation of the polarization. Conclusions. Compared to the launching region of protostellar outflows, the magnetic field in bridge-like structures is weak. Synthetic dust polarization maps of ALMA Bands 6 and 7 (1.3 mm and 870 μm, respectively) can be used as a tracer of the complex morphology of elongated toroidal magnetic fields associated with bridges.


2020 ◽  
Vol 27 (4) ◽  
pp. 042504
Author(s):  
Haijun Ren ◽  
Lai Wei ◽  
Debing Zhang ◽  
X. Q. Xu

2020 ◽  
Vol 494 (1) ◽  
pp. 338-348 ◽  
Author(s):  
Shuta J Tanaka ◽  
Kenji Toma

ABSTRACT Diverging supersonic flows are accelerating, as in the case of a de Laval nozzle, and the same concept has been applied for acceleration of magnetohydrodynamic flows in the universe. Here, we study the dynamics of ‘non-diverging’ cylindrical supersonic flows and show that they can be accelerated by effects of radiative cooling and the tangled magnetic field. In addition to radiative cooling of the jet materials (cooling effect), conversion of the ordered magnetic field into the turbulent one (conversion effect) and dissipation of the turbulent magnetic field (dissipation effect) are formulated according to our study on pulsar wind nebulae. Although each of the cooling and conversion effects is an ineffective acceleration process, the terminal velocity of magnetized cylindrical jets attains about half of the maximum possible value when the cooling, conversion, and dissipation effects work simultaneously. The radiation efficiency is also about half of the total luminosity of the jet in the case of maximal acceleration. The concept for flow acceleration by the non-ideal magnetohydrodynamic effects may be useful for studying relativistic jets in active galactic nuclei, in which the region near the jet axis is expected to be cylindrical and kink unstable.


Sign in / Sign up

Export Citation Format

Share Document