scholarly journals Electron microscopy analysis of ATP-independent nucleosome unfolding by FACT

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Anastasiia L. Sivkina ◽  
Maria G. Karlova ◽  
Maria E. Valieva ◽  
Laura L. McCullough ◽  
Timothy Formosa ◽  
...  

AbstractFACT is a histone chaperone that participates in nucleosome removal and reassembly during transcription and replication. We used electron microscopy to study FACT, FACT:Nhp6 and FACT:Nhp6:nucleosome complexes, and found that all complexes adopt broad ranges of configurations, indicating high flexibility. We found unexpectedly that the DNA binding protein Nhp6 also binds to the C-terminal tails of FACT subunits, inducing more open geometries of FACT even in the absence of nucleosomes. Nhp6 therefore supports nucleosome unfolding by altering both the structure of FACT and the properties of nucleosomes. Complexes formed with FACT, Nhp6, and nucleosomes also produced a broad range of structures, revealing a large number of potential intermediates along a proposed unfolding pathway. The data suggest that Nhp6 has multiple roles before and during nucleosome unfolding by FACT, and that the process proceeds through a series of energetically similar intermediate structures, ultimately leading to an extensively unfolded form.

2021 ◽  
Author(s):  
Anastasiia L Sivkina ◽  
Maria G Karlova ◽  
Maria E Valieva ◽  
Laura McCullough ◽  
Tim Formosa ◽  
...  

FACT is a histone chaperone that unfolds nucleosomes without ATP hydrolysis. We used electron microscopy to study FACT and FACT:nucleosome complexes, and found that both adopt broad ranges of configurations, indicating high flexibility. We found unexpectedly that the DNA binding protein Nhp6 also binds to the C-terminal tails of FACT subunits, inducing more open geometries of FACT even in the absence of nucleosomes. Nhp6 therefore supports nucleosome unfolding by altering both FACT structure and nucleosome properties. Complexes formed with FACT, Nhp6, and nucleosomes also produced a broad range of structures, revealing a large number of potential intermediates along a proposed unfolding pathway. The data suggest that Nhp6 has multiple roles before and during nucleosome unfolding by FACT, and that the process proceeds through a series of energetically similar intermediate structures, ultimately leading to an extensively unfolded form.


2021 ◽  
Author(s):  
Vasily Studitsky ◽  
Anastasiia Sivkina ◽  
Maria Karlova ◽  
Maria Valieva ◽  
Laura McCullough ◽  
...  

Abstract FACT is a histone chaperone that unfolds nucleosomes without ATP hydrolysis. We used electron microscopy to study FACT and FACT:nucleosome complexes, and found that both adopt broad ranges of configurations, indicating high flexibility. We found unexpectedly that the DNA binding protein Nhp6 also binds to the C-terminal tails of FACT subunits, inducing more open geometries of FACT even in the absence of nucleosomes. Nhp6 therefore supports nucleosome unfolding by altering both FACT structure and nucleosome properties. Complexes formed with FACT, Nhp6, and nucleosomes also produced a broad range of structures, revealing a large number of potential intermediates along a proposed unfolding pathway. The data suggest that Nhp6 has multiple roles before and during nucleosome unfolding by FACT, and that the process proceeds through a series of energetically similar intermediate structures, ultimately leading to an extensively unfolded form.


2005 ◽  
Vol 138 (6) ◽  
pp. 821-829 ◽  
Author(s):  
Balasundaram Padmanabhan ◽  
Kazuhiro Kataoka ◽  
Takashi Umehara ◽  
Naruhiko Adachi ◽  
Shigeyuki Yokoyama ◽  
...  

1981 ◽  
Vol 151 (2) ◽  
pp. 321-325 ◽  
Author(s):  
Geoffrey R. Banks ◽  
Ad Spanos ◽  
Michael V. Kairis ◽  
Ian J. Molineux

2010 ◽  
Vol 222 (03) ◽  
Author(s):  
S Degen ◽  
S Kuhfittig-Kulle ◽  
JH Schulte ◽  
F Westermann ◽  
A Schramm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document