scholarly journals Magnonic superradiant phase transition

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Motoaki Bamba ◽  
Xinwei Li ◽  
Nicolas Marquez Peraca ◽  
Junichiro Kono

AbstractIn the superradiant phase transition (SRPT), coherent light and matter fields are expected to appear spontaneously in a coupled light–matter system in thermal equilibrium. However, such an equilibrium SRPT is forbidden in the case of charge-based light–matter coupling, known as no-go theorems. Here, we show that the low-temperature phase transition of ErFeO3 at a critical temperature of approximately 4 K is an equilibrium SRPT achieved through coupling between Fe3+ magnons and Er3+ spins. By verifying the efficacy of our spin model using realistic parameters evaluated via terahertz magnetospectroscopy and magnetization experiments, we demonstrate that the cooperative, ultrastrong magnon–spin coupling causes the phase transition. In contrast to prior studies on laser-driven non-equilibrium SRPTs in atomic systems, the magnonic SRPT in ErFeO3 occurs in thermal equilibrium in accordance with the originally envisioned SRPT, thereby yielding a unique ground state of a hybrid system in the ultrastrong coupling regime.

1998 ◽  
Vol 327-329 ◽  
pp. 391-394
Author(s):  
Keiichi Ikegami ◽  
Shin-ichi Kuroda ◽  
Tomoyuki Akutagawa ◽  
Taro Konuma ◽  
Takayoshi Nakamura ◽  
...  

1970 ◽  
Vol 41 (2) ◽  
pp. 836-838 ◽  
Author(s):  
Mitsuoki Nakahira ◽  
Shigeo Horiuchi ◽  
Hirotoshi Ooshima

Author(s):  
Khai-Nghi Truong ◽  
Carina Merkens ◽  
Martin Meven ◽  
Björn Faßbänder ◽  
Richard Dronskowski ◽  
...  

Single-crystal neutron diffraction experiments at 100 and 2.5 K have been performed to determine the structure of 3-(pyridin-4-yl)pentane-2,4-dione (HacacPy) with respect to its protonation pattern and to monitor a low-temperature phase transition. Solid HacacPy exists as the enol tautomer with a short intramolecular hydrogen bond. At 100 K, its donor···acceptor distance is 2.450 (8) Å and the compound adopts space group C2/c, with the N and para-C atoms of the pyridyl ring and the central C of the acetylacetone substituent on the twofold crystallographic axis. As a consequence of the axial symmetry, the bridging hydrogen is disordered over two symmetrically equivalent positions, and the carbon–oxygen bond distances adopt intermediate values between single and double bonds. Upon cooling, a structural phase transition to the t 2 subgroup P\bar 1 occurs; the resulting twins show an ordered acetylacetone moiety. The phase transition is fully reversible but associated with an appreciable hysteresis in the large single crystal under study: transition to the low-temperature phase requires several hours at 2.5 K and heating to 80 K is required to revert the transformation. No significant hysteresis is observed in a powder sample, in agreement with the second-order nature of the phase transition.


2011 ◽  
Vol 41 (2-4) ◽  
pp. 363-370
Author(s):  
Alisa Chernenkaya ◽  
Marina Kirman ◽  
Alexei Dmitriev ◽  
Roman Morgunov ◽  
Oksana Koplak ◽  
...  

1986 ◽  
Vol 57 (5) ◽  
pp. 339-341 ◽  
Author(s):  
T.J. Bastow ◽  
M.M. Elcombe ◽  
C.J. Howard

Sign in / Sign up

Export Citation Format

Share Document