Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia

Nature Cancer ◽  
2021 ◽  
Author(s):  
Claudie Bosc ◽  
Estelle Saland ◽  
Aurélie Bousard ◽  
Noémie Gadaud ◽  
Marie Sabatier ◽  
...  
2020 ◽  
Vol 26 (23) ◽  
pp. 6132-6140
Author(s):  
Amer M. Zeidan ◽  
Maya Ridinger ◽  
Tara L. Lin ◽  
Pamela S. Becker ◽  
Gary J. Schiller ◽  
...  

2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Kai Chen ◽  
Qianying Yang ◽  
Jie Zha ◽  
Manman Deng ◽  
Yong Zhou ◽  
...  

Abstract Acute myeloid leukemia (AML) is a heterogeneous myeloid neoplasm with poor clinical outcome, despite the great progress in treatment in recent years. The selective Bcl-2 inhibitor venetoclax (ABT-199) in combination therapy has been approved for the treatment of newly diagnosed AML patients who are ineligible for intensive chemotherapy, but resistance can be acquired through the upregulation of alternative antiapoptotic proteins. Here, we reported that a newly emerged histone deacetylase inhibitor, chidamide (CS055), at low-cytotoxicity dose enhanced the anti-AML activity of ABT-199, while sparing normal hematopoietic progenitor cells. Moreover, we also found that chidamide showed a superior resensitization effect than romidepsin in potentiation of ABT-199 lethality. Inhibition of multiple HDACs rather than some single component might be required. The combination therapy was also effective in primary AML blasts and stem/progenitor cells regardless of disease status and genetic aberrance, as well as in a patient-derived xenograft model carrying FLT3-ITD mutation. Mechanistically, CS055 promoted leukemia suppression through DNA double-strand break and altered unbalance of anti- and pro-apoptotic proteins (e.g., Mcl-1 and Bcl-xL downregulation, and Bim upregulation). Taken together, these results show the high therapeutic potential of ABT-199/CS055 combination in AML treatment, representing a potent and alternative salvage therapy for the treatment of relapsed and refractory patients with AML.


2018 ◽  
Author(s):  
Hannah Kaizer ◽  
Binny Bhandary ◽  
Brandon A. Carter-Cooper ◽  
Eun Yong Choi ◽  
Bandish Kapadia ◽  
...  

Leukemia ◽  
2008 ◽  
Vol 22 (9) ◽  
pp. 1781-1782
Author(s):  
P Bernardeschi ◽  
G Fiorentini ◽  
P Dentico ◽  
S Rossi ◽  
G Turrisi ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jiayi Cai ◽  
Honghui Huang ◽  
Xiaoli Hu ◽  
Wenjing Lang ◽  
Wanbin Fu ◽  
...  

FMS-like tyrosine kinase 3 (FLT3) mutant acute myeloid leukemia (AML) occurs in approximately 30% of all AML patients and still has a poor prognosis. This study is directed to investigate gilteritinib in combination with homoharringtonine (HHT) on FLT3-ITD-mutant AML cell lines. In our study, we found that cell proliferation was dramatically suppressed by the combination of gilteritinib and HHT. This combination therapy decreased the mitochondrial membrane potential, finally inducing apoptosis. We demonstrated that gilteritinib downregulated the expression of FLT3 and downstream signaling, further decreased the mRNA level of myeloid cell leukemia-1 (Mcl-1). HHT and combination therapy could upregulate UBE2L6, which induced the degradation of Mcl-1 via ubiquitin-proteasome system. Knockdown of UBE2L6 could protect Mcl-1 from deprivation through the ubiquitin-proteasome system. These findings may provide a novel theoretical basis for the treatment of AML patients with FLT3-ITD mutations.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1370-1370 ◽  
Author(s):  
Anilkumar Gopalakrishnapillai ◽  
Allison Kaeding ◽  
Christoph Schatz ◽  
Anette Sommer ◽  
Soheil Meshinchi ◽  
...  

Pediatric acute myeloid leukemia (AML) continues to have a cure rate of only 50% despite the use of highly intensive cytotoxic chemotherapy. Transcriptome sequencing of several AML samples by the NCI/COG TARGET AML Initiative identified mesothelin (MSLN) to be highly overexpressed in about one-third of pediatric AML (Tarlock et al., Blood, 128:2873, 2016). Because MSLN is not expressed in normal bone marrow samples (Fan et al., Blood, 130:3792, 2017) and only to a low level in other human organs and tissues, MSLN is an attractive therapeutic target for pediatric AML (Kaeding et al., Blood, 130:2641, 2017). The anti-MSLN antibody-drug conjugate (ADC) anetumab ravtansine (BAY 94-9343) generated by conjugating MSLN-antibody with tubulin inhibitor DM4 (Meso-ADC), and isotype control antibody conjugated with the same drug (Iso-ADC) were used to evaluate the efficacy of MSLN targeting in vivo. MSLN-overexpressing K562 (K562-MSLN) CML cells and MV4;11 (MV4;11-MSLN) AML cells were generated by lentiviral transduction of MSLN cDNA. Cell line-derived xenografts (CDX) were created by injecting the MSLN-transduced or parental (MSLN-) cells into NSG-SGM3 mice via the tail vein. Mice were randomly assigned to treatment groups when the median percentage of human cells in mouse peripheral blood was greater than 0.5%. K562-MSLN CDX mice treated with Meso-ADC (5 mg/Kg Q3dx3, i.v.) survived a median of 46 days longer than those treated with Iso-ADC (P=0.0011) and significantly longer than comparison groups, including K562-MSLN CDX mice treated with daunorubicin and Ara-C (DA, P=0.0008) or untreated (P=0.0018) (Fig. 1A). Median survival of K562 CDX mice treated with Meso-ADC, Iso-ADC, or untreated was similar (Fig. 1B). MV4;11-MSLN CDX mice treated with Meso-ADC exhibited complete remission and remained disease-free at 1 year post cell injection, with AML cell burden remaining <0.1% throughout the study period (Fig. 1C). In contrast, MV;11-MSLN CDX mice treated with Iso-ADC or untreated succumbed to disease at 72 and 38 days, respectively. Taken together, these results indicate that Meso-ADC was efficacious in reducing leukemia burden, and this effect required MSLN expression in target cells. We have generated a panel of patient-derived xenograft (PDX) lines by transplanting and serially propagating primary pediatric AML samples into NSG-SGM3 mice. The efficacy of Meso-ADC was also evaluated in a systemic PDX model using a MSLN+ PDX line (NTPL-146). NTPL-146 PDX mice treated with Meso-ADC (5 mg/Kg, Q3dx3 -x2 cycles) survived a median of 50 days longer than those treated with Iso-ADC (P=0.0018, Fig. 1D, arrows indicate time when each treatment cycle was initiated). In an independent experiment with NTPL-146 PDX mice, a survival benefit of Meso-ADC treatment over no treatment was observed after 1 cycle of Meso-ADC treatment (5 mg/Kg, Q3dx3, P=0.0019, Fig. 1E). Additionally, a combination therapy strategy with daunorubicin and Ara-C followed by Meso-ADC (DA -> Meso-ADC) resulted in improved median survival over Meso-ADC (P=0.0027) or DA treatment alone (P=0.0018) (Fig. 1E). The disseminated MSLN+ leukemia mouse models described herein support MSLN-targeted antibody-drug conjugate as a potential treatment strategy in MSLN+ AML. Furthermore, we provide the first in vivo demonstration of synergy between MSLN-targeted therapy and conventional chemotherapy in MSLN+ AML, warranting additional investigation to validate and optimize novel strategies for combination therapy. Figure 1 Disclosures Kaeding: Celgene: Employment. Schatz:Bayer AG: Employment. Sommer:Bayer AG: Employment, Equity Ownership.


2020 ◽  
Vol 98 ◽  
pp. 106456 ◽  
Author(s):  
Douglas Tremblay ◽  
Jonathan Feld ◽  
Mikaela Dougherty ◽  
Tina Czaplinska ◽  
Gillian Sanchez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document