adaptive resistance
Recently Published Documents


TOTAL DOCUMENTS

356
(FIVE YEARS 161)

H-INDEX

42
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Alexandru Dascaliuc

Several morphological and functional mechanisms determine the resistance of plants to extreme temperatures. Depending on the specificity of mechanisms of action, we divided them into two groups: (1) the mechanisms that ensure the avoidance/reduction of the exposure dose; (2) functional mechanisms which increase plant resistance and ability to recover damages caused by stress through regulation metabolic and genes expression activity. We developed theoretical and practical methods to appreciate the contribution of parameters from both groups on the primary and adaptive resistance of different wheat genotypes. This problem became more complicated because some properties are epigenetically inherited and can influence genotypes’ primary (initial) resistance to stressors. The article describes results obtained by the accelerated determination of the initial resistance of wheat (Triticum aestivum L.) genotypes to temperature stress and the prospects for their implementation in the selection and development of methods for rational choosing wheat varieties for cultivation under specific environmental conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elaina J. Wang ◽  
Jia-Shu Chen ◽  
Saket Jain ◽  
Ramin A. Morshed ◽  
Alexander F. Haddad ◽  
...  

Glioblastoma is the most common malignant primary brain tumor in adults. Despite treatment consisting of surgical resection followed by radiotherapy and adjuvant chemotherapy, survival remains poor at a rate of 26.5% at 2 years. Recent successes in using immunotherapies to treat a number of solid and hematologic cancers have led to a growing interest in harnessing the immune system to target glioblastoma. Several studies have examined the efficacy of various immunotherapies, including checkpoint inhibitors, vaccines, adoptive transfer of lymphocytes, and oncolytic virotherapy in both pre-clinical and clinical settings. However, these therapies have yielded mixed results at best when applied to glioblastoma. While the initial failures of immunotherapy were thought to reflect the immunoprivileged environment of the brain, more recent studies have revealed immune escape mechanisms created by the tumor itself and adaptive resistance acquired in response to therapy. Several of these resistance mechanisms hijack key signaling pathways within the immune system to create a protumoral microenvironment. In this review, we discuss immunotherapies that have been trialed in glioblastoma, mechanisms of tumor resistance, and strategies to sensitize these tumors to immunotherapies. Insights gained from the studies summarized here may help pave the way for novel therapies to overcome barriers that have thus far limited the success of immunotherapy in glioblastoma.


2021 ◽  
Author(s):  
Nan Chen ◽  
Anh T. Le ◽  
Eric A. Welsh ◽  
Bin Fang ◽  
Eric B. Haura ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ke Gong ◽  
Gao Guo ◽  
Nicole A. Beckley ◽  
Xiaoyao Yang ◽  
Yue Zhang ◽  
...  

AbstractInhibition of RTK pathways in cancer triggers an adaptive response that promotes therapeutic resistance. Because the adaptive response is multifaceted, the optimal approach to blunting it remains undetermined. TNF upregulation is a biologically significant response to EGFR inhibition in NSCLC. Here, we compared a specific TNF inhibitor (etanercept) to thalidomide and prednisone, two drugs that block TNF and also other inflammatory pathways. Prednisone is significantly more effective in suppressing EGFR inhibition-induced inflammatory signals. Remarkably, prednisone induces a shutdown of bypass RTK signaling and inhibits key resistance signals such as STAT3, YAP and TNF-NF-κB. Combined with EGFR inhibition, prednisone is significantly superior to etanercept or thalidomide in durably suppressing tumor growth in multiple mouse models, indicating that a broad suppression of adaptive signals is more effective than blocking a single component. We identify prednisone as a drug that can effectively inhibit adaptive resistance with acceptable toxicity in NSCLC and other cancers.


2021 ◽  
Vol 101 ◽  
pp. 108199
Author(s):  
Xiaoqing Xu ◽  
Kun Xie ◽  
Bingyu Li ◽  
Lijun Xu ◽  
Lei Huang ◽  
...  
Keyword(s):  

Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1516
Author(s):  
Viviana Cafiso ◽  
Stefano Stracquadanio ◽  
Veronica Dovere ◽  
Flavia Lo Verde ◽  
Alessandra Zega ◽  
...  

The treatment of multidrug-resistant Gram-negative infections is based on colistin. As result, COL-resistance (COL-R) can develop and spread. In Acinetobacter baumannii, a crucial step is to understand COL-R onset and stability, still far to be elucidated. COL-R phenotypic stability, onset modalities, and phylogenomics were investigated in a clinical A. baumannii sample showing a COL resistant (COLR) phenotype at first isolation. COL-R was confirmed by Minimum-Inhibitory-Concentrations as well as investigated by Resistance-Induction assays and Population-Analysis-Profiles (PAPs) to determine: (i) stability; (ii) inducibility; (iii) heteroresistance. Genomics was performed by Mi-Seq Whole-Genome-Sequencing, Phylogenesis, and Genomic Epidemiology by bioinformatics. COLRA. baumannii were subdivided as follows: (i) 3 A. baumannii with stable and high COL MICs defining the “homogeneous-resistant” onset phenotype; (ii) 6 A. baumannii with variable and lower COL MICs displaying a “COL-inducible” onset phenotype responsible for adaptive-resistance or a “subpopulation” onset phenotype responsible for COL-heteroresistance. COL-R stability and onset strategies were not uniquely linked to the amount of LPS and cell envelope charge. Phylogenomics categorized 3 lineages clustering stable and/or unstable COL-R phenotypes with increasing genomic complexity. Likewise, different nsSNP profiling in genes already associated with COL-R marked the stable and/or unstable COL-R phenotypes. Our investigation finds out that A. baumannii can range through unstable or stable COLR phenotypes emerging via different “onset strategies” within phylogenetic lineages displaying increasing genomic mosaicism.


2021 ◽  
Vol 22 (22) ◽  
pp. 12402
Author(s):  
Jennifer J. Lee ◽  
Vaibhav Jain ◽  
Ravi K. Amaravadi

RAS (rat sarcoma virus) mutant cancers remain difficult to treat despite the advances in targeted therapy and immunotherapy. Targeted therapies against the components of mitogen-activated protein kinase (MAPK) pathways, including RAS, RAF, MEK, and ERK, have demonstrated activity in BRAF mutant and, in limited cases, RAS mutant cancer. RAS mutant cancers have been found to activate adaptive resistance mechanisms such as autophagy during MAPK inhibition. Here, we review the recent clinically relevant advances in the development of the MAPK pathway and autophagy inhibitors and focus on their application to RAS mutant cancers. We provide analysis of the preclinical rationale for combining the MAPK pathway and autophagy and highlight the most recent clinical trials that have been launched to capitalize on this potentially synthetic lethal approach to cancer therapy.


3 Biotech ◽  
2021 ◽  
Vol 11 (12) ◽  
Author(s):  
Chhavi Choudhary ◽  
Keshav Kumar Meghwanshi ◽  
Nidhi Shukla ◽  
Jayendra Nath Shukla

Author(s):  
Grace Akrong ◽  
Alexia Chauzy ◽  
Vincent Aranzana-Climent ◽  
Mathilde Lacroix ◽  
Luc Deroche ◽  
...  

The inoculum effect (i.e., reduction in antimicrobial activity at large starting inoculum) is a phenomenon described for various pathogens. Since limited data exist regarding inoculum effect of Acinetobacter baumannii , we evaluated killing of A. baumannii by polymyxin B, a last-resort antibiotic, at several starting inocula and developed a PKPD model to capture this phenomenon. In vitro static time-kill experiments were performed using polymyxin B at concentrations ranging from 0.125 to 128 mg/L against a clinical A. baumannii isolate at four starting inocula from 10 5 to 10 8 CFU/mL. Samples were collected up to 30 h to quantify the viable bacterial burden and were simultaneously modeled in the NONMEM software program. The expression of polymyxin B resistance genes ( lpxACD , pmrCAB and wzc ), and genetic modifications were studied by RT-qPCR and DNA sequencing experiments, respectively. The PKPD model included a single homogeneous bacterial population with adaptive resistance. Polymyxin B effect was modelled as a sigmoidal E max model and the inoculum effect as an increase of polymyxin B EC 50 with increasing starting inoculum using a power function. Polymyxin B displayed a reduced activity as the starting inoculum increased: a 20-fold increase of polymyxin B EC 50 was observed between the lowest and the highest inoculum. No effects of polymyxin B and inoculum size were observed on the studied genes. The proposed PKPD model successfully described and predicted the pronounced in vitro inoculum effect of A. baumannii on polymyxin B activity. These results should be further validated using other bacteria/antibiotic combinations and in vivo models.


Sign in / Sign up

Export Citation Format

Share Document