scholarly journals Adenoviral gene transfer into the normal and injured spinal cord: enhanced transgene stability by combined administration of temperature-sensitive virus and transient immune blockade

Gene Therapy ◽  
1998 ◽  
Vol 5 (12) ◽  
pp. 1612-1621 ◽  
Author(s):  
MI Romero ◽  
GM Smith
2000 ◽  
Vol 12 (9) ◽  
pp. 3437-3442 ◽  
Author(s):  
Andrea B. Huber ◽  
Markus U. Ehrengruber ◽  
Martin E. Schwab ◽  
Christian Brösamle

2002 ◽  
Vol 11 (6) ◽  
pp. 593-613 ◽  
Author(s):  
Bas Blits ◽  
Gerard J. Boer ◽  
Joost Verhaagen

In this review, recent studies using pharmacological treatment, cell transplantation, and gene therapy to promote regeneration of the injured spinal cord in animal models will be summarized. Pharmacological and cell transplantation treatments generally revealed some degree of effect on the regeneration of the injured ascending and descending tracts, but further improvements to achieve a more significant functional recovery are necessary. The use of gene therapy to promote repair of the injured nervous system is a relatively new concept. It is based on the development of methods for delivering therapeutic genes to neurons, glia cells, or nonneural cells. Direct in vivo gene transfer or gene transfer in combination with (neuro)transplantation (ex vivo gene transfer) appeared powerful strategies to promote neuronal survival and axonal regrowth following traumatic injury to the central nervous system. Recent advances in understanding the cellular and molecular mechanisms that govern neuronal survival and neurite outgrowth have enabled the design of experiments aimed at viral vector-mediated transfer of genes encoding neurotrophic factors, growth-associated proteins, cell adhesion molecules, and antiapoptotic genes. Central to the success of these approaches was the development of efficient, nontoxic vectors for gene delivery and the acquirement of the appropriate (genetically modified) cells for neurotransplantation. Direct gene transfer in the nervous system was first achieved with herpes viral and E1-deleted adenoviral vectors. Both vector systems are problematic in that these vectors elicit immunogenic and cytotoxic responses. Adeno-associated viral vectors and lentiviral vectors constitute improved gene delivery systems and are beginning to be applied in neuroregeneration research of the spinal cord. Ex vivo approaches were initially based on the implantation of genetically modified fibroblasts. More recently, transduced Schwann cells, genetically modified pieces of peripheral nerve, and olfactory ensheathing glia have been used as implants into the injured spinal cord.


Neuroreport ◽  
2011 ◽  
Vol 22 (12) ◽  
pp. 565-569 ◽  
Author(s):  
Su-Ping Peng ◽  
Sebastian Kügler ◽  
Zhi-Kui Ma ◽  
Yan-Qin Shen ◽  
Melitta Schachner

1998 ◽  
Vol 793 (1-2) ◽  
pp. 1-6 ◽  
Author(s):  
A.J. Mannes ◽  
R.M. Caudle ◽  
B.C. O'Connell ◽  
M.J. Iadarola

1992 ◽  
Vol 3 (4) ◽  
pp. 261-262 ◽  
Author(s):  
Jean-Claude Horvat ◽  
Monique Pecot-Dechavassine ◽  
Claude Baillet-Derbin ◽  
Jean-Claude Mira ◽  
Jian Hui Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document