scholarly journals Estimating the number, frequency, and dominance of S-alleles in a natural population of Arabidopsis Lyrata (Brassicaceae) with sporophytic control of self-incompatibility

Heredity ◽  
2003 ◽  
Vol 90 (6) ◽  
pp. 422-431 ◽  
Author(s):  
B K Mable ◽  
M H Schierup ◽  
D Charlesworth
Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 387-399 ◽  
Author(s):  
Mikkel H Schierup ◽  
Barbara K Mable ◽  
Philip Awadalla ◽  
Deborah Charlesworth

Abstract We study the segregation of variants of a putative self-incompatibility gene in Arabidopsis lyrata. This gene encodes a sequence that is homologous to the protein encoded by the SRK gene involved in self-incompatibility in Brassica species. We show by diallel pollinations of plants in several full-sib families that seven different sequences of the gene in A. lyrata are linked to different S-alleles, and segregation analysis in further sibships shows that four other sequences behave as allelic to these. The family data on incompatibility provide evidence for dominance classes among the S-alleles, as expected for a sporophytic SI system. We observe no division into pollen-dominant and pollen-recessive classes of alleles as has been found in Brassica, but our alleles fall into at least three dominance classes in both pollen and stigma expression. The diversity among sequences of the A. lyrata putative S-alleles is greater than among the published Brassica SRK sequences, and, unlike Brassica, the alleles do not cluster into groups with similar dominance.


2021 ◽  
Vol 22 (13) ◽  
pp. 6990
Author(s):  
Shinsuke Yasuda ◽  
Risa Kobayashi ◽  
Toshiro Ito ◽  
Yuko Wada ◽  
Seiji Takayama

Self-incompatibility (SI) is conserved among members of the Brassicaceae plant family. This trait is controlled epigenetically by the dominance hierarchy of the male determinant alleles. We previously demonstrated that a single small RNA (sRNA) gene is sufficient to control the linear dominance hierarchy in Brassica rapa and proposed a model in which a homology-based interaction between sRNAs and target sites controls the complicated dominance hierarchy of male SI determinants. In Arabidopsis halleri, male dominance hierarchy is reported to have arisen from multiple networks of sRNA target gains and losses. Despite these findings, it remains unknown whether the molecular mechanism underlying the dominance hierarchy is conserved among Brassicaceae. Here, we identified sRNAs and their target sites that can explain the linear dominance hierarchy of Arabidopsis lyrata, a species closely related to A. halleri. We tested the model that we established in Brassica to explain the linear dominance hierarchy in A. lyrata. Our results suggest that the dominance hierarchy of A. lyrata is also controlled by a homology-based interaction between sRNAs and their targets.


2018 ◽  
Vol 15 (2) ◽  
pp. 150-158
Author(s):  
Ya. I. Ivanovych ◽  
N. V. Tryapitsyna ◽  
K. M. Udovychenko ◽  
R. A. Volkov

Aim. Ukrainian breeders have created a large number of sweet cherry cultivars, which still remain almost unexplored at the molecular level. The aim of our study was to identify the self-incompatibility alleles (S-alleles) in Ukrainian sweet cherry cultivars and landraces, and to elucidate, to which cross-incompatibility group the cultivars belong. Methods. The PCR was conducted using consensus primers to the first and second introns of S-RNAse gene and to the single intron of SFB gene. The electrophoretic analysis of the PCR products of the second intron of S-RNAse was carried out in agarose gel, whereas detection of fluorescently labeled DNA fragments of the first S-RNAse intron and the SFB intron was performed using a genetic analyzer. Results. The S-alleles of 25 Ukrainian sweet cherry cultivars and 10 landraces were identified. The S-alleles frequencies and affiliation of cultivars and landraces to the groups of cross-incompatibility were determined. The obtained data can be used in breeding programs and by planning of industrial plantings. Conclusions. In the study, 12 different S-alleles and 79 S-haplotypes were identified. The S1, S3, S4, S5, S6 and S9 alleles are the most widespread among Ukrainian sweet cherry cultivars and landraces. The high frequencies of S5 and especially of S9 alleles are characteristic for the Ukrainian cultivars and distinguish them from other European ones. For the Ukrainian sweet cherry cultivars, the XXXVII (S5S9) cross-incompatibility group appeared to be the most numerous.Keywords: Ukrainian sweet cherry cultivars, S-locus, Sgenotypes, self- and cross-incompatibility, Prunus avium.


Evolution ◽  
2005 ◽  
Vol 59 (7) ◽  
pp. 1437 ◽  
Author(s):  
Barbara K. Mable ◽  
Alexander V. Robertson ◽  
Sara Dart ◽  
Christina Di Berardo ◽  
Laura Witham

2019 ◽  
Vol 37 (4) ◽  
pp. 1193-1201 ◽  
Author(s):  
Mathieu Genete ◽  
Vincent Castric ◽  
Xavier Vekemans

Abstract Plant self-incompatibility (SI) is a genetic system that prevents selfing and enforces outcrossing. Because of strong balancing selection, the genes encoding SI are predicted to maintain extraordinarily high levels of polymorphism, both in terms of the number of functionally distinct S-alleles that segregate in SI species and in terms of their nucleotide sequence divergence. However, because of these two combined features, documenting polymorphism of these genes also presents important methodological challenges that have so far largely prevented the comprehensive analysis of complete allelic series in natural populations, and also precluded the obtention of complete genic sequences for many S-alleles. Here, we develop a powerful methodological approach based on a computationally optimized comparison of short Illumina sequencing reads from genomic DNA to a database of known nucleotide sequences of the extracellular domain of SRK (eSRK). By examining mapping patterns along the reference sequences, we obtain highly reliable predictions of S-genotypes from individuals collected from natural populations of Arabidopsis halleri. Furthermore, using a de novo assembly approach of the filtered short reads, we obtain full-length sequences of eSRK even when the initial sequence in the database was only partial, and we discover putative new SRK alleles that were not initially present in the database. When including those new alleles in the reference database, we were able to resolve the complete diploid SI genotypes of all individuals. Beyond the specific case of Brassicaceae S-alleles, our approach can be readily applied to other polymorphic loci, given reference allelic sequences are available.


1991 ◽  
Vol 39 (5) ◽  
pp. 497 ◽  
Author(s):  
M Ramsey ◽  
G Vaughton

Controlled self- and cross-pollination indicated that a natural population of Banksia menziesii (Proteaceae) was self-incompatible. Flowers were protandrous. Deposition of pollen into the stigmatic cavity was regulated by opening of the stigmatic groove. Stigmatic grooves opened 24-48 h after the flowers opened. Pollen production was high and the pollen:ovule ratio was approximately 10000. Over 90% of pollen grains were viable when flowers first opened. Viability decreased rapidly with time and most pollen was inviable within 24 h. These results indicate that B. menziesii requires pollen vectors to produce seed and suggest that pollinators may have influenced the evolution of the reproductive traits that were examined.


Sign in / Sign up

Export Citation Format

Share Document