sinapis arvensis
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 25)

H-INDEX

23
(FIVE YEARS 1)

Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121759
Author(s):  
Shahabaldin Rezania ◽  
Saeideh Mahdinia ◽  
Bahareh Oryani ◽  
Jinwoo Cho ◽  
Eilhann E Kwon ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1421
Author(s):  
Maryam Hanif ◽  
Haq Nawaz Bhatti ◽  
Muhammad Asif Hanif ◽  
Umer Rashid ◽  
Asma Hanif ◽  
...  

Disadvantages of biodiesel include consumption of edible oils for fuel production, generation of wastewater and inability to recycle catalysts during homogenously catalyzed transesterification. The aim of the current study was to utilize low-cost, inedible oil extracted from Sinapis arvensis seeds to produce biodiesel using a novel nano-composite superoxide heterogeneous catalyst. Sodium superoxide (NaO2) was synthesized by reaction of sodium nitrate with hydrogen peroxide via spray pyrolysis, followed by coating onto a composite support material prepared from silicon dioxide, potassium ferricyanide and granite. The roasted (110 °C, 20 min) and unroasted S. arvensis seeds were subjected to high vacuum fractional distillation to afford fractions (F1, F2 and F3) that correlated to molecular weight. For example, F1 was enriched in palmitic acid (76–79%), F2 was enriched in oleic acid (69%) and F3 was enriched in erucic acid (61%). These fractions, as well as pure unroasted and roasted S. arvensis seed oils, were then transesterified using NaO2/SiO2/PFC/Granite to give biodiesel a maximum yield of 98.4% and 99.2%, respectively. In contrast, yields using immobilized lipase catalyst were considerably lower (78–85%). Fuel properties such as acid value, cetane number, density, iodine value, pour point, and saponification value were within the ranges specified in the American biodiesel standard, ASTM D6751, where applicable. These results indicated that the nano-composite catalyst was excellent for production of biodiesel from unroasted and roasted S. arvensis seed oil and its fractions.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2306
Author(s):  
Meisam Zargar ◽  
Kavhiza Nyasha John ◽  
Maryam Bayat ◽  
Elena Pakina

Wild mustard (Sinapis arvensis L.) is a weed that frequently infests spring wheat (Triticum aestivum L.) fields in Moscow province, Russia. It is an annual broad leaf weed, which is indigenous throughout most parts of the globe and one of the most competitive weeds of spring cereal crops. In southern Russia it is emerging as an important crop competitor. Field trials focusing on herbicide timing and efficacy on wild mustard control and spring wheat yield in the Moscow region, Kashira and Baribino districts. A PRE glyphosate application to wheat regardless of fall or spring application timing favorably suppressed wild mustard in 2018. Weeds were not controlled in 2019 with the earliest application timings of glyphosate because weeds emerged late. In comparing fall and spring application timings, the formulated combination of (iodosulfuron/mesosulfuron/antidote mefenpyr-diethyl) at both field rates provided 80% weed control for all application timings and locations, and also resulting in the greatest spring wheat grain yield. Overall, herbicide treatments performed greater when they were in the fall than during the spring. Based on POST herbicide application, tribenuron-methyl provided the greatest wild mustard suppression (75%) and also caused the highest reduction in wild mustard biomass (3.3 g), stem number (6), seed number (880) and germination percentage (33%). When wild mustard was approximately 32 weeds/m2 causedtotal wheat yield loss.


Weed Science ◽  
2021 ◽  
pp. 1-27
Author(s):  
Aseemjot Singh ◽  
Gulshan Mahajan ◽  
Bhagirath Singh Chauhan

Abstract Wild mustard (Sinapis arvensis L.) is a widespread weed of the southeastern cropping region of Australia. Seed germination ecology of S. arvensis populations selected from different climatic regions may differ due to adaptative traits. Experiments were conducted to evaluate the effects of temperature, light, radiant heat, soil moisture, salt concentration, and burial depth on seed germination and seedling emergence of two [Queensland (Qld) population: tropical region; and Victoria (Vic) population: temperate region] populations of S. arvensis. Both populations germinated over a wide range of day/night (12 h/12 h) temperatures (15/5 to 35/25 C), and had the highest germination at 30/20 C. Under complete darkness, the Qld population (61%) had higher germination than the Vic population (21%); however, under the light/dark regime, both populations had similar germination (78 to 86%). At 100 C pretreatment for 5 min, the Qld population (44%) had higher germination than the Vic population (13%). Germination of both populations was nil when given pretreatment at 150 and 200 C. The Vic population was found tolerant to high osmotic and salt stress compared with the Qld population. At an osmotic potential of −0.4 MPa, germination of Qld and Vic populations was reduced by 85% and 42%, respectively, compared with their respective control. At 40, 80, and 160 mM sodium chloride, germination of the Qld population was lower than the Vic population. Averaged over the populations, seedling emergence was highest (52%) from a burial depth of 1 cm and was nil from 8 cm depth. Differential germination behaviors of both populations to temperature, light, radiant heat, water stress, and salt stress suggests that populations of S. arvensis may have undergone differential adaptation. Knowledge gained from this study will assist in developing suitable control measures for this weed species to reduce the soil seedbank.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11385
Author(s):  
Bahadir Sin ◽  
İzzet Kadıoglu

Wheat is one of the most important crops grown all around the world. Weeds cause significant yield loss and damage to wheat and their control is generally based on herbicide application. Regular use leads to herbicide resistance in weeds. This study aims to reveal molecular detection of Sinapis arvensis resistance mutation against ALS inhibiting herbicides. For this purpose, survey studies have been carried out in wheat growing areas in Amasya, Çorum, Tokat, and Yozgat provinces and wild mustard seeds have been collected from 310 different fields. According to bioassay tests with tribenuron-methyl, 13 of these populations, have not been affected by the registered dose of herbicide. When survived populations were subjected to dose-effect study and herbicides were applied at 26-fold, the highest and lowest resistance coefficients were determined as 7.2 (A-007) and 1.02 (T-034) respectively. In addition, B domain region from ALS gene was amplified and analyzed in molecular studies to determine point mutation in wild mustard against ALS herbicides. The PCR products were sequenced and target-site mutation to Leucine was observed at Trp-574 amino acide. In the study, point mutation in Trp-574 amino acide and Trp-574 Leu mutation in Sinapis arvensis have been detected for the first time in Turkey.


Author(s):  
Bahadir Şin ◽  
İzzet Kadıoğlu

This study has been carried out in 2017-2018 in order to determine seed dormancy and effective germination depth wild mustard (Sinapis arvensis L.). The in-vitro dormancy breaking experiments (tip breaking, sanding, H2SO4 application, holding in flowing and still water, GA3, KNO3 and GA3+KNO3 combination application) has been applied to wild mustard seeds collected from wheat field in Tokat province and has been applied to wild mustard seeds collected from wheat field in Tokat province and the most effective method was determined as 1000 ppm GA3+KNO3 with 98% impact on seed germination at 15°C within 72 hours. In contrast germination rate has been calculated as 5% in control plants. Furthermore 15°C was assessed as optimum temperature for seed germination was the most effective temperature and during depth studies 100% of wild mustard seeds germinated at 3-5 cm. Because of the difficulies with the work with seeds and plants that have dormancy, these data will contribute future studies.


Botany ◽  
2021 ◽  
Author(s):  
Elham Elahifard ◽  
Abolfazl Derakhshan ◽  
Babak Pakdaman Sardrood

Wild mustard (Sinapis arvensis L.) is well-known as a serious weed of cultivated land, particularly in cereal crops. It produces large amounts of heteromorphic (black and brown) seeds. This study aimed to estimate the critical temperature thresholds of wild mustard heteromorphic seeds. For this purpose, a novel Weibull-based thermal time model was developed, which was applied to compare the germination characteristics of the heteromorphic seeds of wild mustard. Germination was investigated by exposing the seeds to eight constant temperatures of 7.5, 10, 15, 20, 25, 30, 35, and 37.5 °C. Over both the sub- and supra-optimal ranges, the proposed model reasonably explained the germination patterns of both seed types in response to temperature. Heteromorphic seeds of wild mustard exhibited different germination behaviors in response to temperature. Brown seeds were more cold-tolerant and could germinate rapidly to a high percentage (68%) in a wider range of temperature environments (2.78-38.05 °C); black seeds germinated at a narrower temperature range (4.99-37.97 °C), and a large proportion of seeds remained dormant (77%). These differences can lead to the temporal distribution of seed germination throughout the growing season.


Sign in / Sign up

Export Citation Format

Share Document