Isometric force measurement in mouse cerebral arteries: Establishing reference values and characterizing functional consequences of endothelial nitric oxide synthase knock-out in the basilar artery

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S546-S546
Author(s):  
Armin Hilpert ◽  
Zoltan Benyo ◽  
Lothar Schilling
1997 ◽  
Vol 80 (3) ◽  
pp. 327-335 ◽  
Author(s):  
Alex F.Y. Chen ◽  
Timothy O’Brien ◽  
Masato Tsutsui ◽  
Hiroyuki Kinoshita ◽  
Vincent J. Pompili ◽  
...  

Life Sciences ◽  
2013 ◽  
Vol 93 (25-26) ◽  
pp. e13
Author(s):  
Nicolas Vignon-Zellweger ◽  
Katharina Relle ◽  
Jan Rahnenfuhrer ◽  
Karima Schwab ◽  
Berthold Hocher ◽  
...  

2001 ◽  
Vol 91 (5) ◽  
pp. 2391-2399 ◽  
Author(s):  
Greg G. Geary ◽  
Anne Marie McNeill ◽  
Jose A. Ospina ◽  
Diana N. Krause ◽  
Kenneth S. Korach ◽  
...  

Estrogen alters reactivity of cerebral arteries by modifying production of endothelium-dependent vasodilators. Estrogen receptors (ER) are thought to be involved, but the responsible ER subtype is unknown. ER-α knockout (αERKO) mice were used to test whether estrogen acts via ER-α. Mice were ovariectomized, with or without estrogen replacement, and cerebral blood vessels were isolated 1 mo later. Estrogen increased levels of endothelial nitric oxide synthase and cyclooxygenase-1 in vessels from wild-type mice but was ineffective in αERKO mice. Endothelium-denuded middle cerebral artery segments from all animals constricted when pressurized. In denuded arteries from αERKO but not wild-type mice, estrogen treatment enhanced constriction. In endothelium-intact, pressurized arteries from wild-type estrogen-treated mice, diameters were larger compared with arteries from untreated wild-type mice. In addition, contractile responses to indomethacin were greater in arteries from wild-type estrogen-treated mice compared with arteries from untreated wild-type mice. In contrast, estrogen treatment of αERKO mice had no effect on diameter or indomethacin responses of endothelium-intact arteries. Thus ER-α regulation of endothelial nitric oxide synthase and cyclooxygenase-1 pathways appears to contribute to effects of estrogen on cerebral artery reactivity.


2010 ◽  
Vol 31 (1) ◽  
pp. 190-199 ◽  
Author(s):  
Mohammed Sabri ◽  
Jinglu Ai ◽  
Britta Knight ◽  
Asma Tariq ◽  
Hyojin Jeon ◽  
...  

We studied whether endothelial nitric oxide synthase (eNOS) is upregulated and uncoupled in large cerebral arteries after subarachnoid hemorrhage (SAH) and also whether this causes cerebral vasospasm in a mouse model of anterior circulation SAH. Control animals underwent injection of saline instead of blood ( n=16 SAH and n=16 controls). There was significant vasospasm of the middle cerebral artery 2 days after SAH (lumen radius/wall thickness ratio 4.3±1.3 for SAH, 23.2±2.1 for saline, P<0.001). Subarachnoid hemorrhage was associated with terminal deoxynucleotidyl transferase dUTP nick-end labeling, cleaved caspase-3, and Fluoro-Jade-positive neurons in the cortex and with CA1 and dentate regions in the hippocampus. There were multiple fibrinogen-positive microthromboemboli in the cortex and hippocampus after SAH. Transgenic mice expressing lacZ under control of the eNOS promoter had increased X-gal staining in large arteries after SAH, and this was confirmed by the increased eNOS protein on western blotting. Evidence that eNOS was uncoupled was found in that nitric oxide availability was decreased, and superoxide and peroxynitrite concentrations were increased in the brains of mice with SAH. This study suggests that artery constriction by SAH upregulates eNOS but that it is uncoupled and produces peroxynitrite that may generate microemboli that travel distally and contribute to brain injury.


Sign in / Sign up

Export Citation Format

Share Document