scholarly journals Evaluation of Methods for Generating Parametric (R)-[11C]PK11195 Binding Images

2007 ◽  
Vol 27 (9) ◽  
pp. 1603-1615 ◽  
Author(s):  
Alie Schuitemaker ◽  
Bart NM van Berckel ◽  
Marc A Kropholler ◽  
Reina W Kloet ◽  
Cees Jonker ◽  
...  

Activated microglia can be visualised using ( R)-[11C]PK11195 (1-[2-chlorophenyl]- N-methyl- N-[1-methyl-propyl]-3-isoquinoline carboxamide) and positron emission tomography (PET). In previous studies, various methods have been used to quantify ( R)-[11C]PK11195 binding. The purpose of this study was to determine which parametric method would be best suited for quantifying ( R)-[11C]PK11195 binding at the voxel level. Dynamic ( R)-[11C]PK11195 scans with arterial blood sampling were performed in 20 healthy and 9 Alzheimer's disease subjects. Parametric images of both volume of distribution ( Vd) and binding potential ( BP) were obtained using Logan graphical analysis with plasma input. In addition, BP images were generated using two versions of the basis function implementation of the simplified reference tissue model, two versions of Ichise linearisations, and Logan graphical analysis with reference tissue input. Results of the parametric methods were compared with results of full compartmental analysis using nonlinear regression. Simulations were performed to assess accuracy and precision of each method. It was concluded that Logan graphical analysis with arterial input function is an accurate method for generating parametric images of Vd. Basis function methods, one of the Ichise linearisations and Logan graphical analysis with reference tissue input provided reasonably accurate and precise estimates of BP. In pathological conditions with reduced flow rates or large variations in blood volume, the basis function method is preferred because it produces less bias and is more precise.

2019 ◽  
Vol 40 (4) ◽  
pp. 895-903 ◽  
Author(s):  
Thomas Koopman ◽  
Niels Verburg ◽  
Petra JW Pouwels ◽  
Pieter Wesseling ◽  
Otto S Hoekstra ◽  
...  

Quantitative parametric images of O-(2-[18F]fluoroethyl)-L-tyrosine kinetics in diffuse gliomas could be used to improve glioma grading, tumour delineation or the assessment of the uptake distribution of this positron emission tomography tracer. In this study, several parametric images and tumour-to-normal maps were compared in terms of accuracy of region averages (when compared to results from nonlinear regression of a reversible two-tissue compartment plasma input model) and image noise using 90 min of dynamic scan data acquired in seven patients with diffuse glioma. We included plasma input methods (the basis function implementation of the single-tissue compartment model, spectral analysis and Logan graphical analysis) and reference tissue methods (basis function implementations of the simplified reference tissue model, variations of the multilinear reference tissue model and non-invasive Logan graphical analysis) as well as tumour-to-normal ratio maps at three intervals. (Non-invasive) Logan graphical analysis provided volume of distribution maps and distribution volume ratio maps with the lowest level of noise, while the basis function implementations provided the best accuracy. Tumour-to-normal ratio maps provided better results if later interval times were used, i.e. 60–90 min instead of 20–40 min, leading to lower bias (2.9% vs. 10.8%, respectively) and less noise (12.8% vs. 14.4%).


2020 ◽  
Author(s):  
Naoyuki Obokata ◽  
Chie Seki ◽  
Takeshi Hirata ◽  
Jun Maeda ◽  
Hideki Ishii ◽  
...  

AbstractPurposePhosphodiesterase (PDE) 7 is a potential therapeutic target for neurological and inflammatory diseases, although in-vivo visualization of PDE7 has not been successful. In this study, we aimed to develop [11C]MTP38 as a novel positron emission tomography (PET) ligand for PDE7.Methods[11C]MTP38 was radiosynthesized by 11C-cyanation of a bromo precursor with [11C]HCN. PET scans of rat and rhesus monkey brains and in-vitro autoradiography of brain sections derived from these species were conducted with [11C]MTP38. In monkeys, dynamic PET data were analyzed with an arterial input function to calculate the total distribution volume (VT). The non-displaceable binding potential (BPND) in the striatum was also determined by a reference tissue model with cerebellar reference. Finally, striatal occupancy of PDE7 by an inhibitor was calculated in monkeys according to changes in BPND.Results[11C]MTP38 was synthesized with radiochemical purity ≥ 99.4% and molar activity of 38.6 ± 12.6 GBq/μmol. Autoradiography revealed high radioactivity in the striatum and its reduction by non-radiolabeled ligands, in contrast with unaltered autoradiographic signals in other regions. In-vivo PET after radioligand injection to rats and monkeys demonstrated that radioactivity was rapidly distributed to the brain and intensely accumulated in the striatum relative to the cerebellum. Correspondingly, estimated VT values in the monkey striatum and cerebellum were 3.59 and 2.69 mL/cm3, respectively. The cerebellar VT value was unchanged by pretreatment with unlabeled MTP38. Striatal BPND was reduced in a dose-dependent manner after pretreatment with MTP-X, a PDE7 inhibitor. Relationships between PDE7 occupancy by MTP-X and plasma MTP-X concentration could be described by Hill’s sigmoidal function.ConclusionWe have provided the first successful preclinical demonstration of in-vivo PDE7 imaging with a specific PET radioligand. [11C]MTP38 is a feasible radioligand for evaluating PDE7 in the brain and is currently being applied to a first-in-human PET study.


2004 ◽  
Vol 24 (6) ◽  
pp. 600-611 ◽  
Author(s):  
Koichi Sato ◽  
Kiyoshi Fukushi ◽  
Hitoshi Shinotoh ◽  
Shinichiro Nagatsuka ◽  
Noriko Tanaka ◽  
...  

The applicability of two reference tissue-based analyses without arterial blood sampling for the measurement of brain regional acetylcholinesterase (AChE) activity using N-[11C]methylpiperidin-4-yl propionate ([11C]MP4P) was evaluated in 12 healthy subjects. One was a linear least squares analysis derived from Blomqvist's equation, and the other was the analysis of the ratio of target-tissue radioactivity relative to reference-tissue radioactivity proposed by Herholz and coworkers. The standard compartment analysis using arterial input function provided reliable quantification of k3 (an index of AChE activity) estimates in regions with low (neocortex and hippocampus), moderate (thalamus), and high (cerebellum) AChE activity with a coefficient of variation (COV) of 12% to 19%. However, the precise k3 value in the striatum, where AChE activity is the highest, was not obtained. The striatum was used as a reference because its time-radioactivity curve was proportional to the time integral of the arterial input function. Reliable k3 estimates were also obtained in regions with low-to-moderate AChE activity with a COV of less than 21% by striatal reference analyses, though not obtained in the cerebellum. Shape analysis, the previous method of direct k3 estimation from the shape of time-radioactivity data, gave k3 estimates in the cortex and thalamus with a somewhat larger COV. In comparison with the standard analysis, a moderate overestimation of k3 by 9% to 18% in the linear analysis and a moderate underestimation by 2% to 13% in the Herholz method were observed, which were appropriately explained by the results of computer simulation. In conclusion, simplified kinetic analyses are practical and useful for the routine analysis of clinical [11C]MP4P studies and are nearly as effective as the standard analysis for detecting regions with abnormal AChE activity.


2009 ◽  
Vol 30 (1) ◽  
pp. 196-210 ◽  
Author(s):  
Jean-Dominique Gallezot ◽  
Nabeel Nabulsi ◽  
Alexander Neumeister ◽  
Beata Planeta-Wilson ◽  
Wendol A Williams ◽  
...  

[11C]P943 is a new radioligand recently developed to image and quantify serotonin 5-Hydroxytryptamine (5-HT1B) receptors with positron emission tomography (PET). The purpose of this study was to evaluate [11C]P943 for this application in humans, and to determine the most suitable quantification method. Positron emission tomography data and arterial input function measurements were acquired in a cohort of 32 human subjects. Using arterial input functions, compartmental modeling, the Logan graphical analysis, and the multilinear method MA1 were tested. Both the two tissue-compartment model and MA1 provided good fits of the PET data and reliable distribution volume estimates. Using the cerebellum as a reference region, BPND binding potential estimates were computed. [11C]P943 BPND estimates were significantly correlated with in vitro measurements of the density of 5-HT1B receptors, with highest values in the occipital cortex and pallidum. To evaluate noninvasive methods, two- and three-parameter graphical analyses, Simplified Reference Tissue Models (SRTM and SRTM2), and Multilinear Reference Tissue Models (MRTM and MRTM2) were tested. The MRTM2 model provided the best correlation with MA1 binding-potential estimates. Parametric images of the volume of distribution or binding potential of [11C]P943 could be computed using both MA1 and MRTM2. The results show that [11C]P943 provides quantitative measurements of 5-HT1B binding potential.


2003 ◽  
Vol 23 (9) ◽  
pp. 1096-1112 ◽  
Author(s):  
Masanori Ichise ◽  
Jeih-San Liow ◽  
Jian-Qiang Lu ◽  
Akihiro Takano ◽  
Kendra Model ◽  
...  

The authors developed and applied two new linearized reference tissue models for parametric images of binding potential ( BP) and relative delivery ( R1) for [11C]DASB positron emission tomography imaging of serotonin transporters in human brain. The original multilinear reference tissue model (MRTMO) was modified (MRTM) and used to estimate a clearance rate ( k′2) from the cerebellum (reference). Then, the number of parameters was reduced from three (MRTM) to two (MRTM2) by fixing k′2. The resulting BP and R1 estimates were compared with the corresponding nonlinear reference tissue models, SRTM and SRTM2, and one-tissue kinetic analysis (1TKA), for simulated and actual [11C]DASB data. MRTM gave k′2 estimates with little bias (<1%) and small variability (<6%). MRTM2 was effectively identical to SRTM2 and 1TKA, reducing BP bias markedly over MRTMO from 12–70% to 1–4% at the expense of somewhat increased variability. MRTM2 substantially reduced BP variability by a factor of two or three over MRTM or SRTM. MRTM2, SRTM2, and 1TKA had R1 bias <0.3% and variability at least a factor of two lower than MRTM or SRTM. MRTM2 allowed rapid generation of parametric images with the noise reductions consistent with the simulations. Rapid parametric imaging by MRTM2 should be a useful method for human [11C]DASB positron emission tomography studies.


2007 ◽  
Vol 28 (1) ◽  
pp. 207-216 ◽  
Author(s):  
Alexander Hammers ◽  
Prasan Panagoda ◽  
Rolf A Heckemann ◽  
Wolfgang Kelsch ◽  
Federico E Turkheimer ◽  
...  

Reduced signal on [11C]]flumazenil (FMZ) positron emission tomography (PET) is associated with epileptogenic foci. Linear correlations within individuals between parametric and nonparametric images of FMZ binding have been shown, and various methods have been used, without comparison of diagnostic usefulness. Using hippocampal sclerosis (HS) as a test case, we formally compare the diagnostic yield of parametric images obtained either with a parent tracer arterial plasma input function and spectral analysis (yielding volume-of-distribution (VD) images), or with an image-based input function and the simplified reference tissue model (binding potential images, BP-SRTM) with the diagnostic yield of semiquantitative-integrated (ADD) images from 10 to 20 or 20 to 40 mins (ADD1020 and ADD2040). Dynamic 90-min [11C]FMZ PET datasets and arterial plasma input functions were available for 15 patients with medically refractory medial temporal lobe epilepsy (TLE) and histologically verified unilateral HS and for 13 control subjects. SPM2 was used for analysis. ADD1020 and ADD2040 images showed decreased FMZ uptake ipsilateral to the epileptogenic hippocampus in 13/15 cases; 6/13 had bilateral decreases in the ADD1020 analysis and 5/13 in the ADD2040 analysis. BP-SRTM images detected ipsilateral decreases in 12/15 cases, with bilateral decreases in three. In contrast, VD images showed ipsilateral hippocampal decreases in all 15 patients, with bilateral decreases in three patients. Bilateral decreases in the ADD images tended to be more symmetrical and in one case were more marked contralaterally. Full quantification with an image-independent input should ideally be used in the evaluation of FMZ PET; at least in TLE, intrasubject correlations do not predict equivalent clinical usefulness.


2000 ◽  
Vol 20 (7) ◽  
pp. 1111-1133 ◽  
Author(s):  
Ramin V. Parsey ◽  
Mark Slifstein ◽  
Dah-Ren Hwang ◽  
Anissa Abi-Dargham ◽  
Norman Simpson ◽  
...  

Serotonin 5-HT1A receptors are implicated in the pathophysiology of neuropsychiatric conditions. The goal of this study was to evaluate methods to derive 5-HT1A receptor parameters in the human brain with positron emission tomography (PET) and [ carbonyl-11C]WAY 100635. Five healthy volunteer subjects were studied twice. Three methods of analysis were used to derive the binding potential (BP), and the specific to nonspecific equilibrium partition coefficient (k3/k4). Two methods, kinetic analysis based on a three compartment model and graphical analysis, used the arterial plasma time-activity curves as the input function to derive BP and k3/k4. A third method, the simplified reference tissue model (SRTM), derived the input function from uptake data of a region of reference, the cerebellum, and provided only k3/k4. All methods provided estimates of regional 5-HT1A receptor parameters that were highly correlated. Results were consistent with the known distribution of 5-HT1A receptors in the human brain. Compared with kinetic BP, graphical analysis slightly underestimated BP, and this phenomenon was mostly apparent in small size-high noise regions. Compared with kinetic k3/k4, the reference tissue method underestimated k3/k4 and the underestimation was apparent primarily in regions with high receptor density. Derivation of BP by both kinetic and graphical analysis was highly reliable, with an intraclass correlation coefficient (ICC) of 0.84 ± 0.14 (mean ± SD of 15 regions) and 0.84 ± 0.19, respectively. In contrast, the reliability of k3/k4 was lower, with ICC of 0.53 ± 0.28, 0.47 ± 0.28, and 0.55 ± 0.29 for kinetic, graphical, and reference tissue methods, respectively. In conclusion, derivation of BP by kinetic analysis using the arterial plasma input function appeared as the method of choice because of its higher test—retest reproducibility, lower vulnerability to experimental noise, and absence of bias.


2010 ◽  
Vol 30 (8) ◽  
pp. 1538-1549 ◽  
Author(s):  
David Elmenhorst ◽  
Luciano Minuzzi ◽  
Antonio Aliaga ◽  
Jared Rowley ◽  
Gassan Massarweh ◽  
...  

The primary objective of this study was to verify the suitability of reference tissue-based quantification methods of the metabotropic glutamate receptor type 5 (mGluR5) with [11C]ABP688. This study presents in vivo (Positron Emission Tomography (PET)) and in vitro (autoradiography) measurements of mGluR5 densities in the same rats and evaluates both noninvasive and blood-dependent pharmacokinetic models for the quantification of [11C]ABP688 binding. Eleven rats underwent [11C]ABP688 PET scans. In five animals, baseline scans were compared with blockade experiments with the antagonist 1,2-methyl-6-(phenylethynyl)-pyridine (MPEP), and arterial blood samples were drawn and corrected for metabolites. Afterward, saturation-binding autoradiography was performed. Blocking with MPEP resulted in an average decrease of the total distribution volume ( VT) between 43% and 58% (thalamus and caudate-putamen, respectively) but had no significant effect on cerebellar VT (mean reduction: −0.01%). Comparing binding potential ( BPND) based on the VT with noninvasively determined BPND revealed an average negative bias of 0.7% in the caudate-putamen and an average positive bias of 3.1% in the low-binding regions. Scan duration of 50 minutes is required. The cerebellum is a suitable reference region for the quantification of mGluR5 availability as measured with [11C]ABP688 PET in rats. Blood-based and reference region-based PET quantification shows a significant linear relationship to autoradiographic determinations.


Sign in / Sign up

Export Citation Format

Share Document