The catechol 2,3-dioxygenase gene and toluene monooxygenase genes from Burkholderia sp. AA1, an isolate capable of degrading aliphatic hydrocarbons and toluene

2000 ◽  
Vol 25 (3) ◽  
pp. 127-131 ◽  
Author(s):  
Y Ma ◽  
D S Herson
1987 ◽  
Vol 52 (7) ◽  
pp. 1701-1707 ◽  
Author(s):  
Miloslav Křivánek ◽  
Nguyen Thiet Dung ◽  
Pavel Jírů

The catalytic activity of Na, H-Y zeolite samples with a varying Si/Al ratio (2·5 to 20) in the transformation of methanol was determined. The amounts of formed individual aliphatic hydrocarbons as function of reaction time were correlated with the amount of Bronsted and Lewis centres on the catalysts. The effect of coke formation on the over-all course of the reaction has been demonstrated.


1992 ◽  
Vol 57 (12) ◽  
pp. 2553-2560
Author(s):  
Zdravka Popova ◽  
Katia Aristirova ◽  
Christo Dimitrov

The aromatization of a wide range of model aliphatic and cycloaliphatic hydrocarbons (ethene, ethane, propene, n-hexane, 1-hexene, methylcyclopentane, cyclohexane, cyclohexene) on copper-containing NaZSM-5 and HZSM-5 zeolites has been investigated. It was established that the degree of aromatization is related to carbenium ion formation and depends on the acid strength and copper content of zeolite. Experiments with copper-containing samples reduced prior to use indicated the possibility to enhance the selectivity to aromatization. The change of the state of Cu2+ ions during catalytic experiments confirmed the assumption about participation of Cu0 simultaneously with the Bronsted acid centers in the dehydrogenation/hydrogenation steps.


1989 ◽  
Vol 54 (12) ◽  
pp. 3171-3186 ◽  
Author(s):  
Jan Kloubek

The validity of the Fowkes theory for the interaction of dispersion forces at interfaces was inspected for the system water-aliphatic hydrocarbons with 5 to 16 C atoms. The obtained results lead to the conclusion that the hydrocarbon molecules cannot lie in a parallel position or be randomly arranged on the surface but that orientation of molecules increases there the ration of CH3 to CH2 groups with respect to that in the bulk. This ratio is changed at the interface with water so that the surface free energy of the hydrocarbon, γH, rises to a higher value, γ’H, which is effective in the interaction with water molecules. Not only the orientation of molecules depends on the adjoining phase and on the temperature but also the density of hydrocarbons on the surface of the liquid phase changes. It is lower than in the bulk and at the interface with water. Moreover, the volume occupied by the CH3 group increases on the surface more than that of the CH2 group. The dispersion component of the surface free energy of water, γdW = 19.09 mJ/m2, the non-dispersion component, γnW = 53.66 mJ/m2, and the surface free energies of the CH2 and CH3 groups, γ(CH2) = 32.94 mJ/m2 and γ(CH3) = 15.87 mJ/m2, were determined at 20 °C. The dependence of these values on the temperature in the range 15-40 °C was also evaluated.


2012 ◽  
Vol 64 (8) ◽  
pp. 1721-1725 ◽  
Author(s):  
Manoel B. Lima ◽  
Elaine A. Feitosa ◽  
Elissandro S. Emídio ◽  
Haroldo S. Dórea ◽  
Marcelo R. Alexandre

Author(s):  
Maciej Strzempek ◽  
Karolina A. Tarach ◽  
Kinga Góra-Marek ◽  
Fernando Rey ◽  
Miguel Palomino ◽  
...  

Abstract In this article the results of the statistical MC modelling corroborated by the FT-IR spectroscopy and gravimetric adsorption studies of the low aliphatic hydrocarbons in ZSM-5 (Si/Al =28 or...


Sign in / Sign up

Export Citation Format

Share Document