scholarly journals Organic cation transport in the rat kidney in vivo visualized by time-resolved two-photon microscopy

2007 ◽  
Vol 72 (4) ◽  
pp. 422-429 ◽  
Author(s):  
M. Hörbelt ◽  
C. Wotzlaw ◽  
T.A. Sutton ◽  
B.A. Molitoris ◽  
T. Philipp ◽  
...  
2005 ◽  
Vol 289 (3) ◽  
pp. F638-F643 ◽  
Author(s):  
George A. Tanner ◽  
Ruben M. Sandoval ◽  
Bruce A. Molitoris ◽  
James R. Bamburg ◽  
Sharon L. Ashworth

Understanding molecular mechanisms of pathophysiology and disease processes requires the development of new methods for studying proteins in animal tissues and organs. Here, we describe a method for adenoviral-mediated gene transfer into tubule or endothelial cells of the rat kidney. The left kidney of an anesthetized rat was exposed and the lumens of superficial proximal tubules or vascular welling points were microinfused, usually for 20 min. The microinfusion solution contained adenovirus with a cDNA construct of either 1) Xenopus laevis actin depolymerizing factor/cofilin [XAC; wt-green fluorescent protein (GFP)], 2) actin-GFP, or 3) GFP. Sudan black-stained castor oil, injected into nearby tubules, allowed us to localize the microinfused structures for subsequent visualization. Two days later, the rat was anesthetized and the kidneys were fixed for tissue imaging or the left kidney was observed in vivo using two-photon microscopy. Expression of GFP and GFP-chimeric proteins was clearly seen in epithelial cells of the injected proximal tubules and the expressed proteins were localized similarly to their endogenously expressed counterparts. Only a minority of the cells in the virally exposed regions, however, expressed these proteins. Endothelial cells also expressed XAC-GFP after injection of the virus cDNA construct into vascular welling points. An advantage of the proximal tubule and vascular micropuncture approaches is that only minute amounts of virus are required to achieve protein expression in vivo. This micropuncture approach to gene transfer of the virus cDNA construct and intravital two-photon microscopy should be applicable to study of the behavior of any fluorescently tagged protein in the kidney and shows promise in studying renal physiology and pathophysiology.


2009 ◽  
Vol 32 (6) ◽  
pp. 982-987 ◽  
Author(s):  
Paranee Meetam ◽  
Chutima Srimaroeng ◽  
Sunhapas Soodvilai ◽  
Varanuj Chatsudthipong

2009 ◽  
Vol 296 (6) ◽  
pp. F1258-F1265 ◽  
Author(s):  
George A. Tanner

Recent studies of the sieving of serum albumin in the rat kidney using a two-photon microscope suggested that the glomerular sieving coefficient (GSC) of albumin is 0.034, much higher than earlier micropuncture determinations. In the present study, we critically evaluated the use of the two-photon microscope to measure the GSC of albumin in the Munich-Wistar rat in vivo. The albumin GSC averaged 0.004 (SD 0.004), n = 34 glomeruli, when determined with a Zeiss two-photon microscope system and 0.002 (SD 0.002), n = 5, when determined with an Olympus two-photon microscope system. These values are close to the lower limit of detection of GSC, which we estimate to be ∼0.001–0.003. We identified several factors that were likely responsible for the higher albumin GSCs reported earlier using two-photon microscopy. These include animal conditions (i.e., low glomerular filtration rate) and failure to recognize the role of out-of-focus fluorescence in contaminating the fluorescence signal from the urinary space of Bowman's capsule. We observed that hypothermia plus dehydration or a low blood pressure led to an increased albumin GSC. High levels of illumination (high laser outputs) resulted in a falsely elevated albumin GSC. Use of external, instead of internal, photodetectors resulted in an exaggerated albumin GSC because of greater collection of out-of-focus fluorescence. In conclusion, the albumin concentration in the glomerular filtrate of the normal rat, determined by two-photon microscopy, is exceedingly low (5–10 mg/dl).


2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
A Ghallab ◽  
R Reif ◽  
R Hassan ◽  
AS Seddek ◽  
JG Hengstler

2002 ◽  
Vol 90 (4) ◽  
pp. 181-186 ◽  
Author(s):  
Brett Grover ◽  
Christopher Auberger ◽  
Rangaprasad Sarangarajan ◽  
William Cacini

2021 ◽  
Author(s):  
Simeng Gu ◽  
Wei Wang ◽  
Kuan Zhang ◽  
Rou Feng ◽  
Naling Li ◽  
...  

Abstract Different effects of astrocyte during sleep and awake have been extensively studied, especially for metabolic clearance by the glymphatic system, which works during sleep and stops working during waking states. However, how astrocytes contribute to modulation of sensory transmission during sleep and awake animals remain largely unknown. Recent advances in genetically encoded Ca2+ indicators have provided a wealth of information on astrocytic Ca2+, especially in their fine perisynaptic processes, where astrocytic Ca2+ most likely affects the synaptic function. Here we use two-photon microscopy to image astrocytic Ca2+ signaling in freely moving mice trained to run on a wheel in combination with in vivo whole-cell recordings to evaluate the role of astrocytic Ca2+ signaling in different behavior states. We found that there are two kinds of astrocytic Ca2+ signaling: a small long-lasting Ca2+ increase during sleep state and a sharp widespread but short-long-lasting Ca2+ spike when the animal was awake (fluorescence increases were 23.2 ± 14.4% for whisker stimulation at sleep state, compared with 73.3 ± 11.7% for at awake state, paired t-test, p < 0.01). The small Ca2+ transients decreased extracellular K+, hyperpolarized the neurons, and suppressed sensory transmission; while the large Ca2+ wave enhanced sensory input, contributing to reliable sensory transmission in aroused states. Locus coeruleus activation works as a switch between these two kinds of astrocytic Ca2+ elevation. Thus, we show that cortical astrocytes play an important role in processing of sensory input. These two types of events appear to have different pharmacological sources and may play a different role in facilitating the efficacy of sensory transmission.


2021 ◽  
Author(s):  
Huwei Ni ◽  
Yalun Wang ◽  
Tao Tang ◽  
Wenbin Yu ◽  
Dongyu Li ◽  
...  

2006 ◽  
Author(s):  
Matthew Bouchard ◽  
Svetlana Ruvinskya ◽  
David A. Boas ◽  
Elizabeth M. C. Hillman

Sign in / Sign up

Export Citation Format

Share Document