scholarly journals The role of insulin (INS) and insulin-like growth factor-I (IGF-I) in regulating human erythropoiesis. Studies in vitro under serum-free conditions – comparison to other cytokines and growth factors

Leukemia ◽  
1998 ◽  
Vol 12 (3) ◽  
pp. 371-381 ◽  
Author(s):  
J Ratajczak ◽  
Q Zhang ◽  
E Pertusini ◽  
BS Wojczyk ◽  
MA Wasik ◽  
...  
1992 ◽  
Vol 116 (4) ◽  
pp. 1035-1042 ◽  
Author(s):  
K Böhme ◽  
M Conscience-Egli ◽  
T Tschan ◽  
K H Winterhalter ◽  
P Bruckner

In bone forming cartilage in vivo, cells undergo terminal differentiation, whereas most of the cells in normal articular cartilage do not. Chondrocyte hypertrophy can be induced also in vitro by diffusible signals. We have identified growth factors or hormones acting individually on 17-d chick embryo sternal chondrocytes cultured in agarose gels under strictly serum-free conditions. Insulin-like growth factor I or insulin triggered the first steps of chondrocyte maturation, i.e., cell proliferation and increased matrix deposition while the chondrocytic phenotype was maintained. However, cells did not progress to the hypertrophic stage. Proliferation and stimulated collagen production was preceded by a lag period, indicating that synthesis of other components was required before cells became responsive to insulin-like growth factor I or insulin. Very small amounts of FBS exerted effects similar to those of insulin-like growth factor I or insulin. However, FBS could act directly and elicited hypertrophy when constituting greater than 1% of the culture media. Basic FGF has been claimed to be the most potent chondrocyte mitogen, but had negligible effects under serum-free conditions. The same is true for PDGF, a major serum-mitogen. Under the direction of thyroxine, cells did not proliferate but became typical hypertrophic chondrocytes, extensively synthesizing collagen X and alkaline phosphatase.


Endocrine ◽  
1997 ◽  
Vol 6 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Serena H. Chen ◽  
Vanna Zanagnolo ◽  
Sangchai Preutthipan ◽  
Kenneth P. Roberts ◽  
Sandra B. Goodman ◽  
...  

1991 ◽  
Vol 124 (5) ◽  
pp. 602-607 ◽  
Author(s):  
Ben A. A. Scheven ◽  
Nicola J. Hamilton

Abstract. Longitudinal growth was studied using an in vitro model system of intact rat long bones. Metatarsal bones from 18- and 19-day-old rat fetuses, entirely (18 days) or mainly (19 days) composed of chondrocytes, showed a steady rate of growth and radiolabelled thymidine incorporation for at least 7 days in serum-free media. Addition of recombinant human insulin-like growth factor-I to the culture media resulted in a direct stimulation of the longitudinal growth. Recombinant human growth hormone was also able to stimulate bone growth, although this was generally accomplished after a time lag of more than 2 days. A monoclonal antibody to IGF-I abolished both the IGF-I and GH-stimulated growth. However, the antibody had no effect on the growth of the bone explants in control, serum-free medium. Unlike the fetal long bones, bones from 2-day-old neonatal rats were arrested in their growth after 1-2 days in vitro. The neonatal bones responded to IGF-I and GH in a similar fashion as the fetal bones. Thus in this study in vitro evidence of a direct effect of GH on long bone growth via stimulating local production of IGF by the growth plate chondrocytes is presented. Furthermore, endogenous growth factors, others than IGFs, appear to play a crucial role in the regulation of fetal long bone growth.


2014 ◽  
Vol 35 (2) ◽  
pp. 243-254 ◽  
Author(s):  
Sheila Maturana-Teixeira ◽  
Luis Eduardo Gomes Braga ◽  
Raul Carpi Santos ◽  
Karin da Costa Calaza ◽  
Elizabeth Giestal-de-Araujo ◽  
...  

Development ◽  
1990 ◽  
Vol 108 (3) ◽  
pp. 491-495
Author(s):  
R. Spaventi ◽  
M. Antica ◽  
K. Pavelic

Growth factors have an important role in the regulation of cell growth, division and differentiation. They are also involved in the regulation of embryonic growth and differentiation. Insulin and insulin-like growth factor I (IGF I) play an important part in these events in the later stages of embryogenesis, when organogenesis is completed. In this study, we are presenting evidence that insulin and IGF I are also secreted by embryonic tissues during the prepancreatic stage of mouse development. We found measurable amounts of insulin and IGF I in 8- to 12-day-old mouse embryos. We also showed that embryonic cells derived from 8-, 9- and 10-day-old mouse embryos secrete insulin, IGF I and/or related molecules. Furthermore, the same growth factors, when added to the culture of 9-day-old mouse embryonic cells, stimulate their proliferation. These results lead to the conclusion that insulin can stimulate the growth of embryonic cells during the period when pancreas is not yet formed, which is indirect evidence for a paracrine (or autocrine) type of action.


1991 ◽  
Vol 130 (2) ◽  
pp. 245-250 ◽  
Author(s):  
A. Hofig ◽  
F. A. Simmen ◽  
F. W. Bazer ◽  
R. C. M. Simmen

ABSTRACT The effects of insulin-like growth factor-I (IGF-I) on aromatase P450 activity and steroid production in preimplantation pig conceptuses were evaluated in vitro. Conceptuses recovered from gilts on days 10 and 12 of pregnancy were incubated for 6 h in modified Eagle's Minimum Essential Medium (MEM) plus IGF-I (0·1 μg/ml) or insulin (8·5 μg/ml), and conceptuses were monitored for their ability to convert [1,2-3H]β-testosterone into oestrogens. Aromatase activity of day-10 conceptuses was low and unaffected by IGF-I or insulin. In contrast, basal aromatase activity in day-12 conceptuses was about threefold higher and was further increased by IGF-I (P < 0·02), but was unaffected by insulin. To determine whether higher aromatase P450 activity was associated with increased oestradiol production, concentrations of oestradiol were determined by radioimmunoassay in culture medium of day-11 and -12 conceptuses, after incubation in MEM alone or in the presence of dehydroepiandrosterone (DHA, 1 μg/ml) with or without IGF-I (0·1 μg/ml) or insulin (0·1 or 8·5 μg/ml) for 24 h. Conceptuses in MEM plus DHA produced more oestradiol (P < 0·01) than those in MEM alone. Addition of IGF-I or insulin did not increase the effect of DHA. Basal oestradiol production was dependent on conceptus size; however, IGF-I or insulin did not affect basal or DHA-stimulated oestradiol production regardless of conceptus size. These findings demonstrate that IGF-I can modulate aromatase activity in vitro, without affecting overall de-novo steroidogenesis. Thus, the developmental increase in conceptus oestradiol production observed during early pregnancy in the pig may reflect synergistic interactions between IGF-I and other regulatory factors present within the conceptus and/or uterine environment. Journal of Endocrinology (1991) 130, 245–250


1991 ◽  
Vol 128 (3) ◽  
pp. 389-393 ◽  
Author(s):  
B. Houston ◽  
I. E. O'Neill

ABSTRACT Cultured chicken hepatocytes were used to investigate whether insulin and GH interact to regulate insulin-like growth factor-I (IGF-I) production in vitro. In the first set of experiments hepatocytes were preincubated for 6 h in hormone-free medium, and the effects of various combinations of insulin and GH on IGF-I production over the next 24 h were quantified by radioimmunoassay. Basal IGF-I production was 5·36 pg IGF-I/μg DNA and this was increased 1·31±0·13-fold (mean ± s.e.m.) by insulin, 1·90±0·24-fold by GH and 4·46±0·68-fold by a combination of insulin and GH. These results demonstrate that insulin and GH interact synergistically to stimulate IGF-I production in vitro. The synergism with GH occurred at physiological concentrations of insulin with half-maximal stimulation occurring at an insulin concentration of 6 ng/ml. In hepatocytes which had been exposed to insulin immediately before the start of the experiment, the presence of insulin was no longer required for maximal stimulation of IGF-I production by GH. This in-vitro system will facilitate the study of the molecular basis of the interaction between insulin and GH. Journal of Endocrinology (1991) 128, 389–393


2017 ◽  
Vol 29 (8) ◽  
pp. 1635 ◽  
Author(s):  
A. Dance ◽  
J. Kastelic ◽  
J. Thundathil

Beef and dairy bull calves fed a low-nutrition diet during early life had decreased concentrations of circulating insulin-like growth factor I (IGF-I), delayed increases in testosterone, smaller testes and delayed puberty compared with those fed high-nutrition diets. Although IGF-1 has important roles in Sertoli cell function in rats and mice, this has not been well documented in bulls. The objectives of this study were to: (1) isolate Sertoli cells from bull calves at 8 weeks of age, (2) culture them in vitro and (3) determine the effects of IGF-I, FSH and a combination of both hormones on cell proliferation. For Sertoli cell isolation, minced testicular tissues were treated with collagenase followed by trypsin and hyaluronidase to digest seminiferous tubules and release Sertoli cells. In this study, Sertoli cells were successfully isolated from 8-week-old Holstein bull calves (n = 4) and these cells were cultured for up to 8 days. A combination of IGF-I and FSH increased proliferation (~18%) and therefore cell number (1.5-fold) of prepubertal bovine Sertoli cells in culture, providing clear evidence that IGF-I has a similar role in bovine Sertoli cells as reported in rodents.


Sign in / Sign up

Export Citation Format

Share Document