scholarly journals The cytochrome bd-type quinol oxidase is important for survival of Mycobacterium smegmatis under peroxide and antibiotic-induced stress

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Ping Lu ◽  
Marieke H. Heineke ◽  
Anil Koul ◽  
Koen Andries ◽  
Gregory M. Cook ◽  
...  
Microbiology ◽  
1998 ◽  
Vol 144 (12) ◽  
pp. 3297-3308 ◽  
Author(s):  
G. M. Cook ◽  
C. Loder ◽  
B. Soballe ◽  
G. P. Stafford ◽  
J. Membrillo-Hernandez ◽  
...  

2013 ◽  
Vol 153 (6) ◽  
pp. 535-545 ◽  
Author(s):  
Hiroshi Miura ◽  
Tatsushi Mogi ◽  
Yoshitaka Ano ◽  
Catharina T. Migita ◽  
Minenosuke Matsutani ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Eon-Min Ko ◽  
Jeong-Il Oh

The respiratory electron transport chain (ETC) of Mycobacterium smegmatis is terminated with two terminal oxidases, the aa3 cytochrome c oxidase and the cytochrome bd quinol oxidase. The bd quinol oxidase with a higher binding affinity for O2 than the aa3 oxidase is known to play an important role in aerobic respiration under oxygen-limiting conditions. Using relevant crp1 (MSMEG_6189) and crp2 (MSMEG_0539) mutant strains of M. smegmatis, we demonstrated that Crp1 plays a predominant role in induction of the cydAB operon under ETC-inhibitory conditions. Two Crp-binding sequences were identified upstream of the cydA gene, both of which are necessary for induction of cydAB expression under ETC-inhibitory conditions. The intracellular level of cAMP in M. smegmatis was found to be increased under ETC-inhibitory conditions. The crp2 gene was found to be negatively regulated by Crp1 and Crp2, which appears to lead to significantly low cellular abundance of Crp2 relative to Crp1 in M. smegmatis. Our RNA sequencing analyses suggest that in addition to the SigF partner switching system, Crp1 is involved in induction of gene expression in M. smegmatis exposed to ETC-inhibitory conditions.


2000 ◽  
Vol 182 (23) ◽  
pp. 6557-6564 ◽  
Author(s):  
Lena Winstedt ◽  
Claes von Wachenfeldt

ABSTRACT The gram-positive endospore-forming bacterium Bacillus subtilis has, under aerobic conditions, a branched respiratory system comprising one quinol oxidase branch and one cytochrome oxidase branch. The system terminates in one of four alternative terminal oxidases. Cytochrome caa 3 is a cytochromec oxidase, whereas cytochrome bd and cytochromeaa 3 are quinol oxidases. A fourth terminal oxidase, YthAB, is a putative quinol oxidase predicted from DNA sequence analysis. None of the terminal oxidases are, by themselves, essential for growth. However, one quinol oxidase (cytochromeaa 3 or cytochrome bd) is required for aerobic growth of B. subtilis strain 168. Data indicating that cytochrome aa 3 is the major oxidase used by exponentially growing cells in minimal and rich medium are presented. We show that one of the two heme-copper oxidases, cytochrome caa 3 or cytochromeaa 3, is required for efficient sporulation ofB. subtilis strain 168 and that deletion of YthAB in a strain lacking cytochrome aa 3 makes the strain sporulation deficient.


2019 ◽  
Author(s):  
JASON D. MAARSINGH ◽  
SHANSHAN YANG ◽  
JIN G. PARK ◽  
SHELLEY E HAYDEL

Abstract Background Mycobacterium smegmatis is a saprophytic bacterium frequently used as a genetic surrogate to study pathogenic Mycobacterium tuberculosis. The PrrAB two-component genetic regulatory system is essential in M. tuberculosis and represents an attractive therapeutic target. In this study, transcriptomic analysis (RNA-seq) of an M. smegmatis ΔprrAB mutant was used to define the PrrAB regulon and provide insights into the essential nature of PrrAB in M. tuberculosis. Results RNA-seq differential expression analysis of M. smegmatis wild-type (WT), ΔprrAB mutant, and complementation strains revealed that during in vitro exponential growth, PrrAB regulates 167 genes (q < 0.05), 57% of which are induced in the WT background. Gene ontology and cluster of orthologous groups analyses showed that PrrAB regulates genes participating in ion homeostasis, redox balance, metabolism, and energy production. PrrAB induced transcription of dosR (devR), a response regulator gene that promotes latent infection in M. tuberculosis and 21 of the 25 M. smegmatis DosRS regulon homologues. Compared to the WT and complementation strains, the ΔprrAB mutant exhibited an exaggerated delayed growth phenotype upon exposure to potassium cyanide and respiratory inhibition. Gene expression profiling correlated with these growth deficiency results, revealing that PrrAB induces transcription of the high-affinity cytochrome bd oxidase genes under both aerobic and hypoxic conditions. ATP synthesis was ~64% lower in the ΔprrAB mutant relative to WT strain, further demonstrating that PrrAB regulates energy production. Conclusions The M. smegmatis PrrAB two-component system regulates respiratory and oxidative phosphorylation pathways, potentially to provide tolerance against the dynamic environmental conditions experienced in its natural ecological niche. PrrAB positively regulates ATP levels during exponential growth, presumably through transcriptional activation of both terminal respiratory branches (cytochrome c bc1 - aa3 and cytochrome bd oxidases), despite transcriptional repression of ATP synthase genes. Additionally, PrrAB positively regulates expression of the dormancy-associated dosR response regulator genes in an oxygen-independent manner, which may serve to fine-tune sensory perception of environmental stimuli associated with metabolic repression.


2019 ◽  
Author(s):  
JASON D. MAARSINGH ◽  
SHANSHAN YANG ◽  
JIN G. PARK ◽  
Shelley E Haydel

Abstract Background Mycobacterium smegmatis is a saprophytic bacterium frequently used a as a genetic surrogate to study pathogenic Mycobacterium tuberculosis. The PrrAB two-component genetic regulatory system is essential in M. tuberculosis and represents an attractive therapeutic target. In this study, transcriptomic analysis (RNA-seq) of an M. smegmatis ΔprrAB mutant was used to define the PrrAB regulon and provide insights into the essential nature of PrrAB in M. tuberculosis. Results RNA-seq differential expression analysis of M. smegmatis wild-type (WT), ΔprrAB mutant, and complementation strains revealed that during in vitro exponential growth, PrrAB regulates 683 genes, 62% of which are repressed in the WT background. Gene ontology and cluster of orthologous groups analyses showed that PrrAB regulates genes participating in ion homeostasis, redox balance, metabolism, and energy production. PrrAB induced transcription of dosR (devR), a response regulator gene that promotes latent infection in M. tuberculosis. Compared to the WT and complementation strains, the ΔprrAB mutant exhibited an exaggerated delayed growth phenotype upon exposure to potassium cyanide and respiratory inhibition. Gene expression profiling correlated with these growth deficiency results, revealing that PrrAB induces transcription of the high-affinity cytochrome bd oxidase genes under both aerobic and hypoxic conditions. ATP synthesis was ~64% lower in the ΔprrAB mutant relative to WT strain, further demonstrating that PrrAB regulates energy production. Conclusions The M. smegmatis PrrAB two-component system regulates respiratory and oxidative phosphorylation pathways, potentially to provide tolerance against the dynamic environmental conditions experienced in its natural ecological niche. PrrAB positively regulates ATP levels during exponential growth, presumably through transcriptional activation of both terminal respiratory branches (cytochrome c bc1-aa3 and cytochrome bd oxidases), despite transcriptional repression of ATP synthase genes. Additionally, PrrAB positively regulates expression of the dormancy-associated dosR response regulator in an oxygen-independent manner, which may serve to fine-tune sensory perception of environmental stimuli associated with metabolic repression.


2019 ◽  
Author(s):  
JASON D. MAARSINGH ◽  
SHANSHAN YANG ◽  
JIN G. PARK ◽  
Shelley E Haydel

Abstract Background. Mycobacterium smegmatis is a saprophytic bacterium frequently used as a genetic surrogate to study pathogenic Mycobacterium tuberculosis. The PrrAB two-component genetic regulatory system is essential in M. tuberculosis and represents an attractive therapeutic target. In this study, transcriptomic analysis (RNA-seq) of an M. smegmatis ΔprrAB mutant was used to define the PrrAB regulon and provide insights into the essential nature of PrrAB in M. tuberculosis. Results. RNA-seq differential expression analysis of M. smegmatis wild-type (WT), ΔprrAB mutant, and complementation strains revealed that during in vitro exponential growth, PrrAB regulates 167 genes (q < 0.05), 57% of which are induced in the WT background. Gene ontology and cluster of orthologous groups analyses showed that PrrAB regulates genes participating in ion homeostasis, redox balance, metabolism, and energy production. PrrAB induced transcription of dosR (devR), a response regulator gene that promotes latent infection in M. tuberculosis and 21 of the 25 M. smegmatis DosRS regulon homologues. Compared to the WT and complementation strains, the ΔprrAB mutant exhibited an exaggerated delayed growth phenotype upon exposure to potassium cyanide and respiratory inhibition. Gene expression profiling correlated with these growth deficiency results, revealing that PrrAB induces transcription of the high-affinity cytochrome bd oxidase genes under both aerobic and hypoxic conditions. ATP synthesis was ~64% lower in the ΔprrAB mutant relative to WT strain, further demonstrating that PrrAB regulates energy production. Conclusions. The M. smegmatis PrrAB two-component system regulates respiratory and oxidative phosphorylation pathways, potentially to provide tolerance against the dynamic environmental conditions experienced in its natural ecological niche. PrrAB positively regulates ATP levels during exponential growth, presumably through transcriptional activation of both terminal respiratory branches (cytochrome c bc1-aa3 and cytochrome bd oxidases), despite transcriptional repression of ATP synthase genes. Additionally, PrrAB positively regulates expression of the dormancy-associated dosR response regulator genes in an oxygen-independent manner, which may serve to fine-tune sensory perception of environmental stimuli associated with metabolic repression.


Sign in / Sign up

Export Citation Format

Share Document