scholarly journals Erratum: Corrigendum: Prioritizing functional phosphorylation sites based on multiple feature integration

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Qingyu Xiao ◽  
Benpeng Miao ◽  
Jie Bi ◽  
Zhen Wang ◽  
Yixue Li
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Qingyu Xiao ◽  
Benpeng Miao ◽  
Jie Bi ◽  
Zhen Wang ◽  
Yixue Li

Abstract Protein phosphorylation is an important type of post-translational modification that is involved in a variety of biological activities. Most phosphorylation events occur on serine, threonine and tyrosine residues in eukaryotes. In recent years, many phosphorylation sites have been identified as a result of advances in mass-spectrometric techniques. However, a large percentage of phosphorylation sites may be non-functional. Systematically prioritizing functional sites from a large number of phosphorylation sites will be increasingly important for the study of their biological roles. This study focused on exploring the intrinsic features of functional phosphorylation sites to predict whether a phosphosite is likely to be functional. We found significant differences in the distribution of evolutionary conservation, kinase association, disorder score, and secondary structure between known functional and background phosphorylation datasets. We built four different types of classifiers based on the most representative features and found that their performances were similar. We also prioritized 213,837 human phosphorylation sites from a variety of phosphorylation databases, which will be helpful for subsequent functional studies. All predicted results are available for query and download on our website (Predict Functional Phosphosites, PFP, http://pfp.biosino.org/pfp).


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 114340-114353
Author(s):  
Keisuke Maeda ◽  
Yoshiki Ito ◽  
Takahiro Ogawa ◽  
Miki Haseyama

2020 ◽  
Vol 64 (2) ◽  
pp. 325-336 ◽  
Author(s):  
Dimitriya H. Garvanska ◽  
Jakob Nilsson

Abstract Kinetochores are instrumental for accurate chromosome segregation by binding to microtubules in order to move chromosomes and by delaying anaphase onset through the spindle assembly checkpoint (SAC). Dynamic phosphorylation of kinetochore components is key to control these activities and is tightly regulated by temporal and spatial recruitment of kinases and phosphoprotein phosphatases (PPPs). Here we focus on PP1, PP2A-B56 and PP2A-B55, three PPPs that are important regulators of mitosis. Despite the fact that these PPPs share a very similar active site, they target unique ser/thr phosphorylation sites to control kinetochore function. Specificity is in part achieved by PPPs binding to short linear motifs (SLiMs) that guide their substrate specificity. SLiMs bind to conserved pockets on PPPs and are degenerate in nature, giving rise to a range of binding affinities. These SLiMs control the assembly of numerous substrate specifying complexes and their position and binding strength allow PPPs to target specific phosphorylation sites. In addition, the activity of PPPs is regulated by mitotic kinases and inhibitors, either directly at the activity level or through affecting PPP–SLiM interactions. Here, we discuss recent progress in understanding the regulation of PPP specificity and activity and how this controls kinetochore biology.


Sign in / Sign up

Export Citation Format

Share Document