scholarly journals Sea-level proxies in Holocene raised beach ridge deposits (Greenland) revealed by ground-penetrating radar

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Lars Nielsen ◽  
Mette Bendixen ◽  
Aart Kroon ◽  
Mikkel Ulfeldt Hede ◽  
Lars B. Clemmensen ◽  
...  
2018 ◽  
Vol 66 ◽  
pp. 167-179
Author(s):  
Priscila E. Souza ◽  
Aart Kroon ◽  
Lars Nielsen

Detailed topographic data and high-resolution ground-penetrating radar (GPR) reflection data are presented from the present-day beach and across successive raised beach ridges at Itilleq, south-west Disko, West Greenland. In the western part of the study area, the present low-tide level is well defined by an abrupt change in sediment grain size between the sandy foreshore and the upper shoreface that is characterised by frequently occurring large clasts. The main parts of both fine and large clasts appear to be locally derived. Seaward-dipping reflections form downlap points, which are clearly identified in all beach-ridge GPR profiles. Most of them are located at the boundary between a unit with reflection characteristics representing palaeo-foreshore deposits and a deeper and more complex radar unit characterised by diffractions; the deeper unit is not penetrated to large depths by the GPR signals. Based on observations of the active shoreface regime, large clasts are interpreted to give rise to scattering observed near the top of the deeper radar unit. We regard the downlap points located at this radar boundary as markers of palaeo-low-tide levels. In some places, scattering hyperbolas are more pronounced and frequent than in others, suggesting differences in the occurrence of large boulders.


Quaternary ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 9
Author(s):  
Jeffrey S. Munroe

Beach ridges constructed by pluvial Lake Clover in Elko County, Nevada during the Late Pleistocene were investigated with ground-penetrating radar (GPR). The primary objective was to document the internal architecture of these shorelines and to evaluate whether they were constructed during lake rise or fall. GPR data were collected with a ground-coupled 400-Mhz antenna and SIR-3000 controller. To constrain the morphology of the ridges, detailed topographic surveys were collected with a Topcon GTS-235W total station referenced to a second class 0 vertical survey point. GPR transects crossed the beach ridge built by Lake Clover at its highstand of 1725 m, along with seven other ridges down to the lowest beach at 1712 m. An average dielectric permittivity of 5.0, typical for dry sand and gravel, was calculated from GPR surveys in the vicinity of hand-excavations that encountered prominent stratigraphic discontinuities at known depths. Assuming this value, consistent radar signals were returned to a depth of ~3 m. Beach ridges are resolvable as ~90 to 150-cm thick stratified packages of gravelly sand overlying a prominent lakeward-dipping reflector, interpreted as the pre-lake land surface. Many ridges contain a package of sediment resembling a buried berm at their core, typically offset in a landward direction from the geomorphic crest of the beach ridge. Sequences of lakeward-dipping reflectors are resolvable beneath the beach face of all ridges. No evidence was observed to indicate that beach ridges were submerged by higher water levels after their formation. Instead, the GPR data are consistent with a model of sequential ridge formation during a monotonic lake regression.


2013 ◽  
Vol 17 (2) ◽  
pp. 519-531 ◽  
Author(s):  
J. Igel ◽  
T. Günther ◽  
M. Kuntzer

Abstract. Freshwater lenses, as important resource for drinking water, are sensitive to climate changes and sea level rise. To simulate this impact on the groundwater systems, hydraulic subsurface models have to be designed. Geophysical techniques can provide information for generating realistic models. The aim of our work is to show how ground-penetrating radar (GPR) investigations can contribute to such hydrological simulations. In the pilot area, Borkum island, GPR was used to map the shape of the groundwater table (GWT) and to characterise the aquifer. In total, 20 km of constant offset (CO) profiles were measured with centre frequencies of 80 and 200 MHz. Wave velocities were determined by common midpoint (CMP) measurements and vertical radar profiling (VRP) in a monitoring well. The 80 MHz CO data show a clear reflection at the groundwater table, whereas the reflection is weaker for the 200 MHz data. After correcting the GPR water tables for the capillary rise, they are in good accordance with the pressure heads of the observation wells in the area. In the centre of the island, the groundwater table is found up to 3.5 m above sea level, however it is lower towards the coastline and marshland. Some local depressions are observed in the region of dune valleys and around pumping stations of the local water supplier. GPR also reveals details within the sediments and highly-permeable aeolian sands can be distinguished from less-permeable marine sediments. Further, a silt loam layer below the water table could be mapped on a large area. The reflection characteristics indicates scattered erosion channels in this layer that cause it to be an aquitard with some leakage. GPR provides a high resolution map of the groundwater table and insight into the stratigraphy of the sediments and their hydraulic properties. This is valuable complementary information to the observation of sparsely distributed monitoring wells as input to hydraulic simulation.


2015 ◽  
Vol 33 (3) ◽  
pp. 461
Author(s):  
Carolina Pereira Silvestre ◽  
André Luiz Carvalho da Silva ◽  
Maria Augusta Martins da Silva ◽  
Amilsom Rangel Rodrigues

ABSTRACT. The objective of this study is the identification of the internal structure of the Holocene barrier of the Maricá coastal plain (Rio de Janeiro, Brazil) for the understanding of the evolution of this coast. The regional geomorphology is characterized by the large Maricá lagoon and by two sandy barriers which confines a series of small near-dry lagoons. Geophysical data obtained from ground-penetrating radar (GPR) images, with 400 and 200 MHz shielded antennae and borehole samples, both reaching down to about 10 meters in depth, provided information about the sedimentary architecture and geological and oceanographical processes responsible for the evolution of this area in the Holocene. The results show that the barrier internal structure is formed by a set of strata presenting different geometries, dip directions and organization, relative to the following depositional environments: dunes, washover fans, beach and tidal channels. It was possible to determine the importance of the sea level changes, longshore currents and overwash processes for the barrier development. Strong reflectors representing eolian strata dipping towards the continent point out to a phase of barrier retrogradation; afterwards, a succession of very well preserved beach paleoscarps, located south of the previous barrier, shows a phase of barrier progradation. Such evidences indicate that the barrier evolved according to the Holocene sea level fluctuations recognized for the Brazilian coast.Keywords: ground-penetrating radar, barrier-lagoon system, Holocene, Maricá coast. RESUMO. O presente estudo objetivou identificar a estrutura interna da barreira holocênica buscando compreender a evolução da planície costeira de Maricá (Rio de Janeiro). A geomorfologia regional é caracterizada pela Lagoa de Maricá e duas barreiras arenosas, separadas por pequenas lagunas colmatadas. Dados geofísicos obtidos com um georadar, com antenas de 400 e 200 MHz, e amostras de sondagem geológica, ambos até a profundidade média de 10 metros, forneceram informações sobre a arquitetura sedimentar e os processos geológicos e oceanográficos responsáveis pela evolução desta área no Holoceno. Os resultados mostram que a estrutura interna da barreira é formada por um conjunto de estratos de diferentes geometrias, direções de mergulho e modos de organização relacionados aos seguintes ambientes deposicionais: dunas, leques de arrombamento, praias e canais de maré. Essas características permitiram o entendimento da dinâmica costeira responsável pelo desenvolvimento da barreira, com destaque para as variações do nível do mar, correntes de deriva litorânea e mecanismos de sobrelavagem. Refletores marcantes representando estratos eólicos inclinados para o continente indicam uma fase de retrogradação da barreira; a esse episódio se seguiu um período marcado por sucessivas paleoescarpas de tempestade, localizadas mais ao sul, indicando uma fase de progradação. Essas evidências mostram que a barreira evoluiu de acordo com as fases de transgressão e regressão marinha do Holoceno reconhecidas para o litoral brasileiro.Palavras-chave: georadar, sistema barreira-laguna, Holoceno, litoral de Maricá.


2015 ◽  
Vol 10 (1) ◽  
pp. 183-194 ◽  
Author(s):  
Xin Shan ◽  
Xinghe Yu ◽  
Peter D. Clift ◽  
Chengpeng Tan ◽  
Shunli Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document