Chapter 2. Oxidative Folding of Proteins in vitro. Chapter 2.1. The Role of Disulfide Bonds in Protein Folding and Stability

Author(s):  
Matthias Johannes Feige ◽  
Johannes Buchner
2020 ◽  
Author(s):  
Reem Mousa ◽  
Taghreed Hidmi ◽  
Sergei Pomyalov ◽  
Shifra Lansky ◽  
Lareen Khouri ◽  
...  

<p>The oxidative folding of proteins has been studied for over sixty years, providing critical insight into protein folding mechanisms. A well-known folding model for many disulfide-rich proteins is that of hirudin. Hirudin, the most potent natural inhibitor of thrombin, is a 65-residue protein with three disulfide bonds, and folds through plagued pathway that involve highly heterogeneous intermediates and scrambled isomers. The formation of scrambled species is known to limit the rate and efficiency of <i>in vitro</i> oxidative folding of many proteins.</p><p>In the current manuscript we describe our recent work, intended to overcome the limitations of scrambled isomers formation during oxidative protein folding. In this research we deeply investigate the utility of introducing diselenide bridges at the three native disulfide crosslinks as well as at a non-native position on hirudin’s folding, structure and function. Our studies demonstrated that, regardless of the specific positions of these substitutions, the diselenide crosslinks enhanced the folding rate and yield of the hirudin analogs, while reducing the complexity and heterogeneity of the process, and reducing the formation of scrambled isomers.</p><p>A parallel, equally important, objective of our study was to test if diselenide substitutions have structural and functional effects. Crystal structure analysis as well as functional studies indicated that diselenide crosslinks maintained the overall structure of the protein without causing major changes in function and structure. To substantiate these conclusions, we provide inhibition studies and high-resolution crystal structure of the wild-type hirudin and its seleno-analogs. </p>Taken together, we believe that the choice of hirudin as the model in this study has implications beyond its specific folding mechanism, and will serve as a useful methodology for the <i>in vitro</i> oxidative folding of many complex disulfide-rich proteins.


2020 ◽  
Author(s):  
Reem Mousa ◽  
Taghreed Hidmi ◽  
Sergei Pomyalov ◽  
Shifra Lansky ◽  
Lareen Khouri ◽  
...  

<p>The oxidative folding of proteins has been studied for over sixty years, providing critical insight into protein folding mechanisms. A well-known folding model for many disulfide-rich proteins is that of hirudin. Hirudin, the most potent natural inhibitor of thrombin, is a 65-residue protein with three disulfide bonds, and folds through plagued pathway that involve highly heterogeneous intermediates and scrambled isomers. The formation of scrambled species is known to limit the rate and efficiency of <i>in vitro</i> oxidative folding of many proteins.</p><p>In the current manuscript we describe our recent work, intended to overcome the limitations of scrambled isomers formation during oxidative protein folding. In this research we deeply investigate the utility of introducing diselenide bridges at the three native disulfide crosslinks as well as at a non-native position on hirudin’s folding, structure and function. Our studies demonstrated that, regardless of the specific positions of these substitutions, the diselenide crosslinks enhanced the folding rate and yield of the hirudin analogs, while reducing the complexity and heterogeneity of the process, and reducing the formation of scrambled isomers.</p><p>A parallel, equally important, objective of our study was to test if diselenide substitutions have structural and functional effects. Crystal structure analysis as well as functional studies indicated that diselenide crosslinks maintained the overall structure of the protein without causing major changes in function and structure. To substantiate these conclusions, we provide inhibition studies and high-resolution crystal structure of the wild-type hirudin and its seleno-analogs. </p>Taken together, we believe that the choice of hirudin as the model in this study has implications beyond its specific folding mechanism, and will serve as a useful methodology for the <i>in vitro</i> oxidative folding of many complex disulfide-rich proteins.


2013 ◽  
Vol 4 (6) ◽  
pp. 597-604 ◽  
Author(s):  
Yuji Hidaka ◽  
Shigeru Shimamoto

AbstractDisulfide-containing proteins are ideal models for studies of protein folding as the folding intermediates can be observed, trapped, and separated by HPLC during the folding reaction. However, regulating or analyzing the structures of folding intermediates of peptides and proteins continues to be a difficult problem. Recently, the development of several techniques in peptide chemistry and biotechnology has resulted in the availability of some powerful tools for studying protein folding in the context of the structural analysis of native, mutant proteins, and folding intermediates. In this review, recent developments in the field of disulfide-coupled peptide and protein folding are discussed, from the viewpoint of chemical and biotechnological methods, such as analytical methods for the detection of disulfide pairings, chemical methods for disulfide bond formation between the defined Cys residues, and applications of diselenide bonds for the regulation of disulfide-coupled peptide and protein folding.


2015 ◽  
Vol 112 (32) ◽  
pp. 10038-10043 ◽  
Author(s):  
Noortje Ijssennagger ◽  
Clara Belzer ◽  
Guido J. Hooiveld ◽  
Jan Dekker ◽  
Saskia W. C. van Mil ◽  
...  

Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in heme-induced hyperproliferation. To this end, mice were fed a purified control or heme diet (0.5 μmol/g heme) with or without broad-spectrum antibiotics for 14 d. Heme-induced hyperproliferation was shown to depend on the presence of the gut microbiota, because hyperproliferation was completely eliminated by antibiotics, although heme-induced luminal cytotoxicity was sustained in these mice. Colon mucosa transcriptomics revealed that antibiotics block heme-induced differential expression of oncogenes, tumor suppressors, and cell turnover genes, implying that antibiotic treatment prevented the heme-dependent cytotoxic micelles to reach the epithelium. Our results indicate that this occurs because antibiotics reinforce the mucus barrier by eliminating sulfide-producing bacteria and mucin-degrading bacteria (e.g., Akkermansia). Sulfide potently reduces disulfide bonds and can drive mucin denaturation and microbial access to the mucus layer. This reduction results in formation of trisulfides that can be detected in vitro and in vivo. Therefore, trisulfides can serve as a novel marker of colonic mucolysis and thus as a proxy for mucus barrier reduction. In feces, antibiotics drastically decreased trisulfides but increased mucin polymers that can be lysed by sulfide. We conclude that the gut microbiota is required for heme-induced epithelial hyperproliferation and hyperplasia because of the capacity to reduce mucus barrier function.


2016 ◽  
Vol 52 (16) ◽  
pp. 3336-3339 ◽  
Author(s):  
Post Sai Reddy ◽  
Norman Metanis

Small molecule diselenides were prepared and found to enhance thein vitrooxidative folding of disulfide-rich protein.


2003 ◽  
Vol 285 (1) ◽  
pp. C150-C160 ◽  
Author(s):  
Seema Kalra ◽  
Ning Li ◽  
Shakuntla Seetharam ◽  
David H. Alpers ◽  
Bellur Seetharam

The current studies have investigated the role of three disulfide bonds of human transcobalamin II (TC II), a plasma transporter of cobalamin (Cbl; vitamin B12), in its function and stability. When translated in vitro in the presence or absence of microsomal vesicles, TC II constructs with a single substitution, C3S or C249S, demonstrated synthesis of a stable functional protein. However, TC II synthesized in the presence of microsomal vesicles using constructs with a single (C98S, C147S, C187S, C291S), double (C3/147/S, C98/147/S) or triple (C3/98/147/S) substitution was unstable. In the absence of microsomal vesicles, the percentage of binding to Cbl-Sepharose matrix by TC II expressed by constructs C3S, C3/147/S, C98/147/S, or C3/98/147/S was 100, 49, 52, and 35%, respectively. Upon their reductive alkylation, the binding of TC II expressed by these constructs was reduced to ∼25–30%. TC II constructs C3S or C249S, when expressed in TC II-deficient fibroblasts, produced a stable functional protein, but those expressed by constructs C147S, C187S, C291S, C3/147/S, C98/147/S, or C3/98/147/S were rapidly degraded. The intracellular degradation of TC II expressed by these constructs was inhibited by lactacystin or MG-132 but not by the lysosomal degradation inhibitors ammonium chloride or chloroquine. These studies suggest that optimal binding of Cbl by human TC II is supported by disulfide bonds C98-C291 and C147-C187 and that their disruption results in loss of Cbl binding and their rapid degradation by the proteasomal machinery.


2000 ◽  
Vol 74 (23) ◽  
pp. 11388-11393 ◽  
Author(s):  
Peggy P. Li ◽  
Akira Nakanishi ◽  
Mary A. Tran ◽  
Adler M. Salazar ◽  
Robert C. Liddington ◽  
...  

ABSTRACT We have developed a new nonoverlapping infectious viral genome (NO-SV40) in order to facilitate structure-based analysis of the simian virus 40 (SV40) life cycle. We first tested the role of cysteine residues in the formation of infectious virions by individually mutating the seven cysteines in the major capsid protein, Vp1. All seven cysteine mutants—C9A, C49A, C87A, C104A, C207S, C254A, and C267L—retained viability. In the crystal structure of SV40, disulfide bridges are formed between certain Cys104 residues on neighboring pentamers. However, our results show that none of these disulfide bonds are required for virion infectivity in culture. We also introduced five different mutations into Cys254, the most strictly conserved cysteine across the polyomavirus family. We found that C254L, C254S, C254G, C254Q, and C254R mutants all showed greatly reduced (around 100,000-fold) plaque-forming ability. These mutants had no apparent defect in viral DNA replication. Mutant Vp1's, as well as wild-type Vp2/3, were mostly localized in the nucleus. Further analysis of the C254L mutant revealed that the mutant Vp1 was able to form pentamers in vitro. DNase I-resistant virion-like particles were present in NO-SV40-C254L-transfected cell lysate, but at about 1/18 the amount in wild-type-transfected lysate. An examination of the three-dimensional structure reveals that Cys254 is buried near the surface of Vp1, so that it cannot form disulfide bonds, and is not involved in intrapentamer interactions, consistent with the normal pentamer formation by the C254L mutant. It is, however, located at a critical junction between three pentamers, on a conserved loop (G2H) that packs against the dual interpentamer Ca2+-binding sites and the invading C-terminal helix of an adjacent pentamer. The substitution by the larger side chains is predicted to cause a localized shift in the G2H loop, which may disrupt Ca2+ ion coordination and the packing of the invading helix, consistent with the defect in virion assembly. Our experimental system thus allows dissection of structure-function relationships during the distinct steps of the SV40 life cycle.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Reem Mousa ◽  
Taghreed Hidmi ◽  
Sergei Pomyalov ◽  
Shifra Lansky ◽  
Lareen Khouri ◽  
...  

AbstractThe in vitro oxidative folding of proteins has been studied for over sixty years, providing critical insight into protein folding mechanisms. Hirudin, the most potent natural inhibitor of thrombin, is a 65-residue protein with three disulfide bonds, and is viewed as a folding model for a wide range of disulfide-rich proteins. Hirudin’s folding pathway is notorious for its highly heterogeneous intermediates and scrambled isomers, limiting its folding rate and yield in vitro. Aiming to overcome these limitations, we undertake systematic investigation of diselenide bridges at native and non-native positions and investigate their effect on hirudin’s folding, structure and activity. Our studies demonstrate that, regardless of the specific positions of these substitutions, the diselenide crosslinks enhanced the folding rate and yield of the corresponding hirudin analogues, while reducing the complexity and heterogeneity of the process. Moreover, crystal structure analysis confirms that the diselenide substitutions maintained the overall three-dimensional structure of the protein and left its function virtually unchanged. The choice of hirudin as a study model has implications beyond its specific folding mechanism, demonstrating the high potential of diselenide substitutions in the design, preparation and characterization of disulfide-rich proteins.


2001 ◽  
Vol 75 (5) ◽  
pp. 2051-2058 ◽  
Author(s):  
Qing-Yin Wang ◽  
Klavs Dolmer ◽  
Wen Huang ◽  
Peter G. W. Gettins ◽  
Lijun Rong

ABSTRACT Tva is the cellular receptor for subgroup A avian sarcoma and leukosis virus (ASLV-A). The viral receptor function of Tva is determined by a 40-residue cysteine-rich motif called the LDL-A module. In this study, we expressed and purified the wild-type (wt) Tva LDL-A module as well as several mutants and examined their in vitro folding properties. We found that, as for other LDL-A modules, correct folding and structure of the Tva LDL-A module is Ca2+ dependent. When calcium was present during in vitro protein folding, the wt module was eluted as a single peak by reverse-phase high-pressure liquid chromatography. Furthermore, two-dimensional nuclear magnetic resonance (NMR) spectroscopy gave well-dispersed spectra in the presence of calcium. In contrast, the same protein folded in vitro in the absence of calcium was eluted as multiple broad peaks and gave a poorly dispersed NMR spectrum in the presence of calcium. The calcium affinity (Kd ) of the Tva LDL-A module, determined by isothermal titration calorimetry, is approximately 40 μM. Characterization of several Tva mutants provided further evidence that calcium is important in protein folding and function of Tva. Mutations of the Ca2+-binding residues (D46A and E47A) completely abrogated the Ca2+-binding ability of Tva, and the proteins were not correctly folded. Interestingly, mutations of two non-calcium-binding residues (W48A and L34A) also exerted adverse effect on Ca2+-dependent folding, albeit to a much less extent. Our results provide new insights regarding the structure and function of Tva in ASLV-A entry.


Sign in / Sign up

Export Citation Format

Share Document