scholarly journals Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon

2015 ◽  
Vol 112 (32) ◽  
pp. 10038-10043 ◽  
Author(s):  
Noortje Ijssennagger ◽  
Clara Belzer ◽  
Guido J. Hooiveld ◽  
Jan Dekker ◽  
Saskia W. C. van Mil ◽  
...  

Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in heme-induced hyperproliferation. To this end, mice were fed a purified control or heme diet (0.5 μmol/g heme) with or without broad-spectrum antibiotics for 14 d. Heme-induced hyperproliferation was shown to depend on the presence of the gut microbiota, because hyperproliferation was completely eliminated by antibiotics, although heme-induced luminal cytotoxicity was sustained in these mice. Colon mucosa transcriptomics revealed that antibiotics block heme-induced differential expression of oncogenes, tumor suppressors, and cell turnover genes, implying that antibiotic treatment prevented the heme-dependent cytotoxic micelles to reach the epithelium. Our results indicate that this occurs because antibiotics reinforce the mucus barrier by eliminating sulfide-producing bacteria and mucin-degrading bacteria (e.g., Akkermansia). Sulfide potently reduces disulfide bonds and can drive mucin denaturation and microbial access to the mucus layer. This reduction results in formation of trisulfides that can be detected in vitro and in vivo. Therefore, trisulfides can serve as a novel marker of colonic mucolysis and thus as a proxy for mucus barrier reduction. In feces, antibiotics drastically decreased trisulfides but increased mucin polymers that can be lysed by sulfide. We conclude that the gut microbiota is required for heme-induced epithelial hyperproliferation and hyperplasia because of the capacity to reduce mucus barrier function.

Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1451
Author(s):  
Lavrentii G. Danilov ◽  
Svetlana E. Moskalenko ◽  
Andrew G. Matveenko ◽  
Xenia V. Sukhanova ◽  
Mikhail V. Belousov ◽  
...  

Amyloids are fibrillar protein aggregates with a cross-β structure and unusual features, including high resistance to detergent or protease treatment. More than two hundred different proteins with amyloid or amyloid-like properties are already known. Several examples of nucleoporins (e.g., yeast Nup49, Nup100, Nup116, and human NUP153) are supposed to form amyloid fibrils. In this study, we demonstrated an ability of the human NUP58 nucleoporin to form amyloid aggregates in vivo and in vitro. Moreover, we found two forms of NUP58 aggregates: oligomers and polymers stabilized by disulfide bonds. Bioinformatic analysis revealed that all known orthologs of this protein are potential amyloids which possess several regions with conserved ability to aggregation. The biological role of nucleoporin amyloid formation is debatable. We suggest that it is a rather abnormal process, which is characteristic for many proteins implicated in phase separation.


2018 ◽  
Vol 238 (3) ◽  
pp. 231-244 ◽  
Author(s):  
You-Hua Xu ◽  
Chen-Lin Gao ◽  
Heng-Li Guo ◽  
Wen-Qian Zhang ◽  
Wei Huang ◽  
...  

Endotoxemia has been recognized to be closely accompanied with type 2 diabetes mellitus (T2DM) and is responsible for many diabetic complications. Recent study suggests the potential role of butyrate, a short-chain fatty acid (SCFA) from microbiota metabolite, on T2DM. Gut-leak is a key event in diabetic-endotoxemia. To investigate if butyrate could ameliorate diabetic-endotoxemia, both in vivo and in vitro experiments were carried out in the present study. The effect of butyrate supplementation on blood HbA1c and inflammatory cytokines were determined in db/db mice; gut barrier integrity and expression of tight junction proteins were investigated both in vivo and in vitro. Oral butyrate administration significantly decreased blood HbA1c, inflammatory cytokines and LPS in db/db mice; inflammatory cell infiltration was reduced, and gut integrity and intercellular adhesion molecules were increased as detected by HE staining, immunohistochemistry and Western blot. By gut microbiota assay, ratio of Firmicutes:Bacteroidetes for gut microbiota was reduced by butyrate. In Caco-2 cells, butyrate significantly promoted cell proliferation, decreased inflammatory cytokines’ secretion, enhanced cell anti-oxidative stress ability and preserved the epithelial monocellular integrity, which was damaged by LPS. The present findings demonstrated that butyrate supplementation could ameliorate diabetic-endotoxemia in db/db mice via restoring composition of gut microbiota and preserving gut epithelial barrier integrity.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
HM Lee ◽  
TG Ahn ◽  
CW Kim ◽  
HJ An
Keyword(s):  

1987 ◽  
Vol 26 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. Selvaraj ◽  
M. R. Suresh ◽  
G. McLean ◽  
D. Willans ◽  
C. Turner ◽  
...  

The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both a and ß configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models.


1971 ◽  
Vol 66 (3) ◽  
pp. 558-576 ◽  
Author(s):  
Gerald Burke

ABSTRACT A long-acting thyroid stimulator (LATS), distinct from pituitary thyrotrophin (TSH), is found in the serum of some patients with Graves' disease. Despite the marked physico-chemical and immunologic differences between the two stimulators, both in vivo and in vitro studies indicate that LATS and TSH act on the same thyroidal site(s) and that such stimulation does not require penetration of the thyroid cell. Although resorption of colloid and secretion of thyroid hormone are early responses to both TSH and LATS, available evidence reveals no basic metabolic pathway which must be activated by these hormones in order for iodination reactions to occur. Cyclic 3′, 5′-AMP appears to mediate TSH and LATS effects on iodination reactions but the role of this compound in activating thyroidal intermediary metabolism is less clear. Based on the evidence reviewed herein, it is suggested that the primary site of action of thyroid stimulators is at the cell membrane and that beyond the(se) primary control site(s), there exists a multifaceted regulatory system for thyroid hormonogenesis and cell growth.


2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


The role of vitamin D is implicated in carcinogenesis through numerous biological processes like induction of apoptosis, modulation of immune system inhibition of inflammation and cell proliferation and promotion of cell differentiation. Its use as additional adjuvant drug with cancer treatment may be novel combination for improved outcome of different cancers. Numerous preclinical, epidemiological and clinical studies support the role of vitamin D as an anticancer agent. Anticancer properties of vitamin D have been studied widely (both in vivo and in vitro) among various cancers and found to have promising results. There are considerable data that indicate synergistic potential of calcitriol and antitumor agents. Possible mechanisms for modulatory anticancer activity of vitamin D include its antiproliferative, prodifferentiating, and anti-angiogenic and apoptic properties. Calcitriol reduces invasiveness and metastatic potential of many cancer cells by inhibiting angiogenesis and regulating expression of the key molecules involved in invasion and metastasis. Anticancer activity of vitamin D is synergistic or additive with the antineoplastic actions of several drugs including cytotoxic chemotherapy agents like paclitaxel, docetaxel, platinum base compounds and mitoxantrone. Benefits of addition of vitamin D should be weighed against the risk of its toxicity.


Sign in / Sign up

Export Citation Format

Share Document