intracellular degradation
Recently Published Documents


TOTAL DOCUMENTS

384
(FIVE YEARS 50)

H-INDEX

53
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Dmitry V Zaretsky ◽  
Maria V Zaretskaia ◽  
Yaroslav I Molkov

Amyloid plaques are the main signature of Alzheimer's disease (AD). Beta-amyloid (Aβ) concentration in cerebrospinal fluid (CSF-Aβ) and the density of amyloid depositions have a strong negative correlation. However, AD patients have lower CSF-Aβ levels compared to cognitively normal people even after accounting for this correlation. The goal of this study was to infer variations of parameters in Aβ metabolism of AD patients that underlie this difference using data from the Alzheimer's Disease Neuroimaging Initiative cohort. We found that AD patients had dramatically increased rates of cellular amyloid uptake compared to individuals with normal cognition (NC). A group with late-onset mild cognitive impairment (LMCI) also exhibited stronger amyloid uptake, however this was less pronounced than in the AD group. Estimated parameters in the early-onset MCI group did not differ significantly from those in the NC group. Aβ cytotoxicity depends on both the amount of peptide internalized by cells and its intracellular degradation into toxic products. Based on our results, we speculate that AD and LMCI are associated with increased cellular amyloid uptake which leads to faster disease progression, whereas the early-onset MCI may be mediated by the increased production of toxic amyloid metabolites.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6328
Author(s):  
Manuela Santarosa ◽  
Roberta Maestro

Cell-to-cell adhesion is a key element in epithelial tissue integrity and homeostasis during embryogenesis, response to damage, and differentiation. Loss of cell adhesion and gain of mesenchymal features, a phenomenon known as epithelial to mesenchymal transition (EMT), are essential steps in cancer progression. Interestingly, downregulation or degradation by endocytosis of epithelial adhesion molecules (e.g., E-cadherin) associates with EMT and promotes cell migration. Autophagy is a physiological intracellular degradation and recycling process. In cancer, it is thought to exert a tumor suppressive role in the early phases of cell transformation but, once cells have gained a fully transformed phenotype, autophagy may fuel malignant progression by promoting EMT and conferring drug resistance. In this review, we discuss the crosstalk between autophagy, EMT, and turnover of epithelial cell adhesion molecules, with particular attention to E-cadherin.


2021 ◽  
Vol 164 ◽  
pp. 105300
Author(s):  
Zhongwei Chen ◽  
Ningjie Li ◽  
Qi Lan ◽  
Xuehong Zhang ◽  
Lei Wu ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Alessia Filippone ◽  
Jian-Guo Li ◽  
Domenico Praticò

Background: The vacuolar protein sorting 35 (VPS35) is the main component of the retromer recognition core complex system which regulates intracellular cargo protein sorting and trafficking. Downregulation of VPS35 has been linked to the pathogenesis of neurodegenerative disorders such Alzheimer’s and Parkinson’s diseases via endosome dysregulation. Objective: Here we show that the genetic manipulation of VPS35 affects intracellular degradation pathways. Methods: A neuronal cell line expressing human APP Swedish mutant was used. VPS35 silencing was performed treating cells with VPS35 siRNA or Ctr siRNA for 72 h. Results: Downregulation of VPS35 was associated with alteration of autophagy flux and intracellular accumulation of acidic and ubiquitinated aggregates suggesting that dysfunction of the retromer recognition core leads to a significant alteration in both pathways. Conclusion: Taken together, our data demonstrate that besides cargo sorting and trafficking, VPS35 by supporting the integral function of the retromer complex system plays an important role also as a critical regulator of intracellular degradation pathways.


2021 ◽  
Author(s):  
Kit Neikirk ◽  
Zer Vue ◽  
Prasanna Katti ◽  
Jianqiang Shao ◽  
Trace A. Christensen ◽  
...  

Autophagosomes and lysosomes work in tandem to conduct autophagy, an intracellular degradation system which is crucial for cellular homeostasis. Altered autophagy contributes to the pathophysiology of various diseases, including cancers and metabolic diseases. Although many studies have investigated autophagy to elucidate disease pathogenesis, specific identification of the various components of the cellular degradation machinery remains difficult. The goal of this paper is to describe an approach to reproducibly identify and distinguish subcellular structures involved in autophagy. We provide methods that avoid common pitfalls, including a detailed explanation for how to distinguish lysosomes and lipid droplets and discuss the differences between autophagosomes and inclusion bodies. These methods are based on using transmission electron microscopy (TEM), capable of generating nanometer-scale micrographs of cellular degradation components in a fixed sample. In addition to TEM, we discuss other imaging techniques, such as immunofluorescence and immunogold labeling, which can be utilized for the reliable and accurate classification of cellular organelles. Our results show how these methods may be employed to accurately quantify the cellular degradation machinery under various conditions, such as treatment with the endoplasmic reticulum stressor thapsigargin or the ablation of dynamin-related protein 1.


2021 ◽  
Author(s):  
Emanuela Dazzo ◽  
Carlo Nobile

Abstract Autosomal dominant lateral temporal epilepsy (ADLTE) is a genetically heterogeneous neurologic disorder clinically characterized by focal seizures with auditory symptoms and/or aphasia. About 20% of ADLTE families segregate disease-causing heterozygous mutations in RELN, a brain-expressed gene encoding the secreted protein Reelin. Using a cell-based secretion assay, we show that pathogenic RELN mutations abolish or significantly reduce secretion of mutant proteins, and that this secretion defect results from impaired trafficking of mutant Reelin along the secretory pathway. Confocal immunofluorescence analysis of transiently transfected cells shows that Reelin mutant proteins are degraded by the autophagy system, as revealed by increased formation of autophagosomes immunoreacting with the autophagy markers p62 and LC3. In addition, LC3 immunoblotting shows a significant increase of autophagy flux due to mutant overexpression. Finally, we show that the secretion defect of mutant proteins can be partially rescued by small-molecule correctors. Altogether, these results suggest that Reelin mutant proteins are not properly secreted and that they are degraded through the autophagy pathway.


Author(s):  
Sameer Tiwari ◽  
Sharmin Begum ◽  
France Moreau ◽  
Hayley Gorman ◽  
Kris Chadee

Goblet cells are specialized for the production and secretion of MUC2 glycoproteins that forms a thick layer covering the mucosal epithelium as a protective barrier against noxious substances and invading microbes. High MUC2 mucin biosynthesis induces endoplasmic reticulum (ER) stress and apoptosis in goblet cells during inflammatory and infectious diseases. Autophagy is an intracellular degradation process required for maintenance of intestinal homeostasis. In this study, we hypothesized that autophagy was triggered during high MUC2 mucin biosynthesis from colonic goblet cells to cope with metabolic stress. To interrogate this, we analyzed the autophagy process in high MUC2-producing human HT29-H and a clone HT29-L silenced for MUC2 expression by lentivirus-mediated shRNA, and WT and CRISPR/Cas9 MUC2 KO LS174T cells. Autophagy was constitutively increased in high MUC2 producing cells characterized by elevated pULK1S555 expression and increased numbers of autophagosomes as compared to MUC2 silenced or gene edited cells. Similarly, colonoids from Muc2+/+ but not Muc2-/- littermates differentiated into goblet cells showed increased autophagy. IL-22 treatment corrected misfolded MUC2 protein and alleviated the autophagy process in LS174T cells. This study highlights that autophagy plays an essential role in goblet cells to survive during high mucin biosynthesis by regulating cellular homeostasis.


2021 ◽  
Vol 220 (10) ◽  
Author(s):  
Halim Kusumaatmaja ◽  
Alexander I. May ◽  
Roland L. Knorr

Protein-rich droplets, such as stress granules, P-bodies, and the nucleolus, perform diverse and specialized cellular functions. Recent evidence has shown the droplets, which are also known as biomolecular condensates or membrane-less compartments, form by phase separation. Many droplets also contact membrane-bound organelles, thereby functioning in development, intracellular degradation, and organization. These underappreciated interactions have major implications for our fundamental understanding of cells. Starting with a brief introduction to wetting phenomena, we summarize recent progress in the emerging field of droplet–membrane contact. We describe the physical mechanism of droplet–membrane interactions, discuss how these interactions remodel droplets and membranes, and introduce "membrane scaffolding" by liquids as a novel reshaping mechanism, thereby demonstrating that droplet–membrane interactions are elastic wetting phenomena. “Membrane-less” and “membrane-bound” condensates likely represent distinct wetting states that together link phase separation with mechanosensitivity and explain key structures observed during embryogenesis, during autophagy, and at synapses. We therefore contend that droplet wetting on membranes provides a robust and intricate means of intracellular organization.


Author(s):  
Francesca Ascenzi ◽  
Claudia De Vitis ◽  
Marcello Maugeri-Saccà ◽  
Christian Napoli ◽  
Gennaro Ciliberto ◽  
...  

Abstract Background Autophagy is an intracellular degradation system that removes unnecessary or dysfunctional components and recycles them for other cellular functions. Over the years, a mutual regulation between lipid metabolism and autophagy has been uncovered. Methods This is a narrative review discussing the connection between SCD1 and the autophagic process, along with the modality through which this crosstalk can be exploited for therapeutic purposes. Results Fatty acids, depending on the species, can have either activating or inhibitory roles on autophagy. In turn, autophagy regulates the mobilization of fat from cellular deposits, such as lipid droplets, and removes unnecessary lipids to prevent cellular lipotoxicity. This review describes the regulation of autophagy by lipid metabolism in cancer cells, focusing on the role of stearoyl-CoA desaturase 1 (SCD1), the key enzyme involved in the synthesis of monounsaturated fatty acids. SCD1 plays an important role in cancer, promoting cell proliferation and metastasis. The role of autophagy in cancer is more complex since it can act either by protecting against the onset of cancer or by promoting tumor growth. Mounting evidence indicates that autophagy and lipid metabolism are tightly interconnected. Conclusion Here, we discuss controversial findings of SCD1 as an autophagy inducer or inhibitor in cancer, highlighting how these activities may result in cancer promotion or inhibition depending upon the degree of cancer heterogeneity and plasticity.


Sign in / Sign up

Export Citation Format

Share Document