oxidative protein folding
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 30)

H-INDEX

37
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Jose Manuel Ugalde ◽  
Isabel Aller ◽  
Lika Kudrjasova ◽  
Romy Schmidt ◽  
Michelle Schloesser ◽  
...  

Oxidative protein folding in the endoplasmic reticulum (ER) depends on the coordinated action of protein disulfide isomerases and ER oxidoreductins (EROs). Strict dependence of ERO activity on molecular oxygen as the final electron acceptor implies that oxidative protein folding and other ER processes are severely compromised under hypoxia. While many key players involved in oxidative protein folding are known, our understanding of how redox homeostasis in the ER is maintained and how EROs, the Cys residues of nascent proteins, and the luminal glutathione redox buffer interact is limited. Here, we isolated viable ero1 ero2 double mutants largely deficient in ERO activity, which rendered the mutants highly sensitive to reductive stress and hypoxia. To elucidate the specific redox dynamics in the ER lumen in vivo, we expressed the glutathione redox potential (EGSH) sensor Grx1-roGFP2iL-HDEL with a midpoint potential of -240 mV in the ER of Arabidopsis plants. We found EGSH values of -241 mV in wild-type plants, which is less oxidizing than previously estimated. In the ero1 ero2 mutants, luminal EGSH was reduced further to -253 mV. Recovery to reductive ER stress, as induced by acute exposure to dithiothreitol, was delayed in ero1 ero2 mutants. The characteristic signature of EGSH dynamics in the ER lumen triggered by hypoxia was affected in the ero1 ero2 mutant reflecting a disrupted balance of reductive and oxidizing inputs, including nascent polypeptides and glutathione entry. The ER redox dynamics can now be dissected in vivo, revealing a central role of EROs as major redox integrators to promote luminal redox homeostasis.


2021 ◽  
Author(s):  
Gokul G ◽  
Jogender Singh

The redox reagent dithiothreitol (DTT) causes stress in the endoplasmic reticulum (ER) by disrupting its oxidative protein folding environment, which results in the accumulation and misfolding of the newly synthesized proteins. DTT may potentially impact cellular physiology by ER-independent mechanisms; however, such mechanisms remain poorly characterized. Using the nematode model Caenorhabditis elegans, here we show that DTT toxicity is modulated by the bacterial diet. Specifically, the dietary component vitamin B12 alleviates DTT toxicity in a methionine synthase-dependent manner. Using a forward genetic screen, we identify that loss-of-function of R08E5.3, an S-adenosylmethionine (SAM)-dependent methyltransferase, imparts resistance to DTT. DTT upregulates R08E5.3 expression and modulates the activity of the methionine-homocysteine cycle. Employing genetic studies, we show that DTT toxicity is a result of the depletion of SAM. Finally, we show that a functional IRE-1/XBP-1 unfolded protein response pathway is required to counteract toxicity at high, but not low, DTT concentrations.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1090
Author(s):  
Rumi Mikami ◽  
Shunsuke Tsukagoshi ◽  
Kenta Arai

In a previous study, we reported that (S)-1,2-diselenane-4-amine (1) catalyzes oxidative protein folding through protein disulfide isomerase (PDI)-like catalytic mechanisms and that the direct conjugation of a basic amino acid (Xaa: His, Lys, or Arg) via an amide bond improves the catalytic activity of 1 by increasing its diselenide (Se–Se) reduction potential (E′°). In this study, to modulate the Se–Se redox properties and the association of the compounds with a protein substrate, new catalysts, in which a Gly spacer was inserted between 1 and Xaa, were synthesized. Exhaustive comparison of the PDI-like catalytic activities and E′° values among 1, 1-Xaa, and 1-Gly-Xaa showed that the insertion of a Gly spacer into 1-Xaa either did not change or slightly reduced the PDI-like activity and the E′° values. Importantly, however, only 1-Gly-Arg deviated from this generality and showed obviously increased E°′ value and PDI-like activity compared to the corresponding compound with no Gly spacer (1-Arg); on the contrary, its catalytic activity was the highest among the diselenide compounds employed in this study, while this abnormal enhancement of the catalytic activity of 1-Gly-Arg could not be fully explained by the thermodynamics of the Se–Se bond and its association ability with protein substrates.


Author(s):  
Gino L. Turra ◽  
Linda Liedgens ◽  
Frederik Sommer ◽  
Luzia Schneider ◽  
David Zimmer ◽  
...  

The discovery of the redox proteins Mia40/CHCHD4 and Erv1/ALR, as well as the elucidation of their relevance for oxidative protein folding in the mitochondrial intermembrane space of yeast and mammals, founded a new research topic in redox biology and mitochondrial protein import. The lack of Mia40/CHCHD4 in protist lineages raises fundamental and controversial questions regarding the conservation and evolution of this essential pathway.


2021 ◽  
Vol 22 (18) ◽  
pp. 10148
Author(s):  
Alessio Bocedi ◽  
Giada Cattani ◽  
Giorgia Gambardella ◽  
Linda Schulte ◽  
Harald Schwalbe ◽  
...  

Glutathione has long been suspected to be the primary low molecular weight compound present in all cells promoting the oxidative protein folding, but twenty years ago it was found “not guilty”. Now, new surprising evidence repeats its request to be the “smoking gun” which reopens the criminal trial revealing the crucial involvement of this tripeptide.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2853
Author(s):  
Yuya Tanikawa ◽  
Shingo Kanemura ◽  
Dai Ito ◽  
Yuxi Lin ◽  
Motonori Matsusaki ◽  
...  

ERp57, a member of the protein disulfide isomerase family, is a ubiquitous disulfide catalyst that functions in the oxidative folding of various clients in the mammalian endoplasmic reticulum (ER). In concert with ER lectin-like chaperones calnexin and calreticulin (CNX/CRT), ERp57 functions in virtually all folding stages from co-translation to post-translation, and thus plays a critical role in maintaining protein homeostasis, with direct implication for pathology. Here, we present mechanisms by which Ca2+ regulates the formation of the ERp57-calnexin complex. Biochemical and isothermal titration calorimetry analyses revealed that ERp57 strongly interacts with CNX via a non-covalent bond in the absence of Ca2+. The ERp57-CNX complex not only promoted the oxidative folding of human leukocyte antigen heavy chains, but also inhibited client aggregation. These results suggest that this complex performs both enzymatic and chaperoning functions under abnormal physiological conditions, such as Ca2+ depletion, to effectively guide proper oxidative protein folding. The findings shed light on the molecular mechanisms underpinning crosstalk between the chaperone network and Ca2+.


2021 ◽  
Vol 8 (4) ◽  
pp. 77-86
Author(s):  
Huong Thi Phuong ◽  
Yuki Ishiwata-Kimata ◽  
Yuki Nishi ◽  
Norie Oguchi ◽  
Hiroshi Takagi ◽  
...  

Saccharomyces cerevisiae is a facultative anaerobic organism that grows well under both aerobic and hypoxic conditions in media containing abundant fermentable nutrients such as glucose. In order to deeply understand the physiological dependence of S. cerevisiae on aeration, we checked endoplasmic reticulum (ER)-stress status by monitoring the splicing of HAC1 mRNA, which is promoted by the ER stress-sensor protein, Ire1. HAC1-mRNA splicing that was caused by conventional ER-stressing agents, including low concentrations of dithiothreitol (DTT), was more potent in hypoxic cultures than in aerated cultures. Moreover, growth retardation was observed by adding low-dose DTT into hypoxic cultures of ire1∆ cells. Unexpectedly, aeration mitigated ER stress and DTT-induced impairment of ER oxidative protein folding even when mitochondrial respiration was halted by the ro mutation. An ER-located protein Ero1 is known to directly consume molecular oxygen to initiate the ER protein oxidation cascade, which promotes oxidative protein folding of ER client proteins. Our further study using ero1-mutant strains suggested that, in addition to mitochondrial respiration, this Ero1-medaited reaction contributes to mitigation of ER stress by molecular oxygen. Taken together, here we demonstrate a scenario in which aeration acts beneficially on S. cerevisiae cells even under fermentative conditions.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 879
Author(s):  
Shunsuke Okada ◽  
Motonori Matsusaki ◽  
Masaki Okumura ◽  
Takahiro Muraoka

Oxidative protein folding is a biological process to obtain a native conformation of a protein through disulfide-bond formation between cysteine residues. In a cell, disulfide-catalysts such as protein disulfide isomerase promote the oxidative protein folding. Inspired by the active sites of the disulfide-catalysts, synthetic redox-active thiol compounds have been developed, which have shown significant promotion of the folding processes. In our previous study, coupling effects of a thiol group and guanidyl unit on the folding promotion were reported. Herein, we investigated the influences of a spacer between the thiol group and guanidyl unit. A conjugate between thiol and guanidyl units with a diethylene glycol spacer (GdnDEG-SH) showed lower folding promotion effect compared to the thiol–guanidyl conjugate without the spacer (GdnSH). Lower acidity and a more reductive property of the thiol group of GdnDEG-SH compared to those of GdnSH likely resulted in the reduced efficiency of the folding promotion. Thus, the spacer between the thiol and guanidyl groups is critical for the promotion of oxidative protein folding.


Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 195
Author(s):  
Kenta Arai ◽  
Michio Iwaoka

In the last few decades, development of novel experimental techniques, such as new types of disulfide (SS)-forming reagents and genetic and chemical technologies for synthesizing designed artificial proteins, is opening a new realm of the oxidative folding study where peptides and proteins can be folded under physiologically more relevant conditions. In this review, after a brief overview of the historical and physicochemical background of oxidative protein folding study, recently revealed folding pathways of several representative peptides and proteins are summarized, including those having two, three, or four SS bonds in the native state, as well as those with odd Cys residues or consisting of two peptide chains. Comparison of the updated pathways with those reported in the early years has revealed the flexible nature of the protein folding pathways. The significantly different pathways characterized for hen-egg white lysozyme and bovine milk α-lactalbumin, which belong to the same protein superfamily, suggest that the information of protein folding pathways, not only the native folded structure, is encoded in the amino acid sequence. The application of the flexible pathways of peptides and proteins to the engineering of folded three-dimensional structures is an interesting and important issue in the new realm of the current oxidative protein folding study.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Andreas J. Meyer ◽  
Anna Dreyer ◽  
José M. Ugalde ◽  
Elias Feitosa-Araujo ◽  
Karl-Josef Dietz ◽  
...  

AbstractCys-based redox regulation was long regarded a major adjustment mechanism of photosynthesis and metabolism in plants, but in the recent years, its scope has broadened to most fundamental processes of plant life. Drivers of the recent surge in new insights into plant redox regulation have been the availability of the genome-scale information combined with technological advances such as quantitative redox proteomics and in vivo biosensing. Several unexpected findings have started to shift paradigms of redox regulation. Here, we elaborate on a selection of recent advancements, and pinpoint emerging areas and questions of redox biology in plants. We highlight the significance of (1) proactive H2O2 generation, (2) the chloroplast as a unique redox site, (3) specificity in thioredoxin complexity, (4) how to oxidize redox switches, (5) governance principles of the redox network, (6) glutathione peroxidase-like proteins, (7) ferroptosis, (8) oxidative protein folding in the ER for phytohormonal regulation, (9) the apoplast as an unchartered redox frontier, (10) redox regulation of respiration, (11) redox transitions in seed germination and (12) the mitochondria as potential new players in reductive stress safeguarding. Our emerging understanding in plants may serve as a blueprint to scrutinize principles of reactive oxygen and Cys-based redox regulation across organisms.


Sign in / Sign up

Export Citation Format

Share Document