Diversity of the coordination modes of Croconate Violet. Crystal structures, spectroscopic characterization and redox studies of mono-, di- and poly-nuclear iron(ii) complexesElectronic supplementary information (ESI) available: Table S1, hydrogen bonding interactions in the complexes. See http://www.rsc.org/suppdata/dt/b3/b300960m/

2003 ◽  
pp. 2449 ◽  
Author(s):  
Brigitte Soula ◽  
Anne Marie Galibert ◽  
Bruno Donnadieu ◽  
Paul-Louis Fabre
2017 ◽  
Vol 19 (5) ◽  
pp. 4030-4040 ◽  
Author(s):  
Luca Grisanti ◽  
Dorothea Pinotsi ◽  
Ralph Gebauer ◽  
Gabriele S. Kaminski Schierle ◽  
Ali A. Hassanali

Different types of hydrogen bonding interactions that occur in amyloids model systems and molecular factors that control the susceptibility of the protons to undergo proton transfer and how this couples to the optical properties.


2017 ◽  
Vol 73 (7) ◽  
pp. 1021-1025
Author(s):  
Francois Eya'ane Meva ◽  
Timothy John Prior ◽  
David John Evans ◽  
Emmanuel Roland Mang

The crystal structures ofN′-aminopyridine-2-carboximidamide (C6H8N4),1, andN′-{[1-(pyridin-2-yl)ethylidene]amino}pyridine-2-carboximidamide (C13H13N5),2, are described. The non-H atoms in compound1are nearly planar (r.m.s. deviation from planarity = 0.0108 Å), while2is twisted about the central N—N bond by 17.8 (2)°. Both molecules are linked by intermolecular N—H...N hydrogen-bonding interactions;1forms a two-dimensional hydrogen-bonding network and for2the network is a one-dimensional chain. The bond lengths of these molecules are similar to those in other literature reports of azine and diimine systems.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1020-C1020
Author(s):  
Masood Parvez ◽  
Muhammad Bakhtiar ◽  
Muhammad Baqir ◽  
Muhammad Zia-ur-Rehman

Chalcones constitute an important class of bioactive drug targets in the pharmaceutical industry that includes anti-ulcerative drug sofalcone. In continuation of our work, the crystal structures of four closely related 1-phenyl-piperidine based chalcones will be presented. I: C19 H21NOS, MW = 311.43, T = 173(2) K, λ = 0.71073 Å, Orthorhombic, P b c a, a = 10.1045(4), b = 10.5358(4), c = 30.6337(12) Å, V = 3261.2(2) Å3, Z = 8, Dc = 1.269 Mg/m3, F (000) = 1328, R [I>2σ(I)] = 0.059. II: C18H19NOS, MW = 297.40, T = 173(2) K, λ = 1.54178 Å, Orthorhombic, P b c a, a = 8.9236(2), b = 11.0227(2), c = 30.8168(6) Å, V = 3031.21(11) Å3 Z = 8, Dc = 1.303 Mg/m3, F (000) = 1264, R [I>2σ(I)] = 0.035. III: C18H19NOS, MW = 297.40, T = 173(2) K, λ = 1.54178 Å, Orthorhombic, P b c a, a = 8.82990(10), b = 11.0061(2), c = 31.2106(5) Å, V = 3033.13(8) Å3, Z = 8, Dc = 1.303 Mg/m3, F (000) = 1264, R [I>2σ(I)] = 0.048. IV: C18H18ClNOS, MW = 331.84, T = 173(2) K, λ = 0.71073 Å, Monoclinic, P 21/c, a = 14.1037(4), b = 11.3153(3), c = 10.1290(2) Å, β = 101.1367(14)0, V = 1586.02(7) Å3, Z = 4, Dc = 1.390 Mg/m3, F (000) = 696, R [I>2σ(I)] = 0.038. The crystals of I, II and III are isomorphous. In all structures, the piperidine rings are in chair conformations, thiophene rings are essentially planar and the C=C bonds in the prop-2-en-1-one fragment adopt E-conformation. All crystal structures are devoid of any classical hydrogen bonds. However, non-classical hydrogen bonding interactions of the type C---H...O in compounds II, III and IV link the molecules into chains extended along the b-axis. Moreover, C---H...Cg interactions involving thiophene rings in I and III and benzene ring in IV and π...π interactions between benzene rings lying about inversion centers are present in II and III.


Author(s):  
Aaron D. Finke ◽  
Danielle L. Gray ◽  
Jeffrey S. Moore

Under anhydrous conditions and in the absence of a Lewis-base solvent, a zinc chloride complex with tri-tert-butylphosphane as the μ-bridged dimer is formed,viz.di-μ-chlorido-bis[chloridobis(tri-tert-butylphosphane)zinc], [ZnCl4(C12H27P)2], (1), which features a nearly square-shaped (ZnCl)2cyclic core and whose Cl atoms interact weakly with C—H groups on the phosphane ligand. In the presence of THF, monomeric dichlorido(tetrahydrofuran-κO)(tri-tert-butylphosphane-κP)zinc, [ZnCl2(C4H8O)(C12H27P)] or [P(tBu3)(THF)ZnCl2], (2), is formed. This slightly distorted tetrahedral Zn complex has weak C—H...Cl interactions between the Cl atoms and phosphane and THF C—H groups. Under ambient conditions, the hydrolysed complex tri-tert-butylphosphonium aquatrichloridozincate 1,2-dichloroethane monosolvate, (C12H28P)[ZnCl3(H2O)]·C2H4Cl2or [HPtBu3]+[(H2O)ZnCl3]−·C2H4Cl2, (3), is formed. This complex forms chains of [(H2O)ZnCl3]−anions from hydrogen-bonding interactions between the water H atoms and Cl atoms that propagate along thebaxis.


Author(s):  
Nina R. Marogoa ◽  
D.V. Kama ◽  
Hendrik G. Visser ◽  
M. Schutte-Smith

Each central platinum(II) atom in the crystal structures of chlorido[dihydroxybis(1-iminoethoxy)arsanido-κ3 N,As,N′]platinum(II), [Pt(C4H10AsN2O4)Cl] (1), and of chlorido[dihydroxybis(1-iminopropoxy)arsanido-κ3 N,As,N′]platinum(II), [Pt(C6H14AsN2O4)Cl] (2), is coordinated by two nitrogen donor atoms, a chlorido ligand and to arsenic, which, in turn, is coordinated by two oxygen donor ligands, two hydroxyl ligands and the platinum(II) atom. The square-planar and trigonal–bipyramidal coordination environments around platinum and arsenic, respectively, are significantly distorted with the largest outliers being 173.90 (13) and 106.98 (14)° for platinum and arsenic in (1), and 173.20 (14)° and 94.20 (9)° for (2), respectively. One intramolecular and four classical intermolecular hydrogen-bonding interactions are observed in the crystal structure of (1), which give rise to an infinite three-dimensional network. A similar situation (one intramolecular and four classical intermolecular hydrogen-bonding interactions) is observed in the crystal structure of (2). Various π-interactions are present in (1) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.7225 (7) Å, and between the centroids of five-membered (Pt, As, C, N, O) rings of neighbouring molecules with distances of 3.7456 (4) and 3.7960 (6) Å. Likewise, weak π-interactions are observed in (2) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.8213 (2) Å, as well as between the Cl atom and the centroid of a symmetry-related five-membered ring with a distance of 3.8252 (12) Å. Differences between (2) and the reported polymorph [Miodragović et al. (2013). Angew. Chem. Int. Ed. 52, 10749–10752] are discussed.


Sign in / Sign up

Export Citation Format

Share Document