Fullerene-encapsulated porphyrin hexagonal nanorods. An anisotropic donor–acceptor composite for efficient photoinduced electron transfer and light energy conversion

2008 ◽  
pp. 3372 ◽  
Author(s):  
Taku Hasobe ◽  
Atula S. D. Sandanayaka ◽  
Takehiko Wada ◽  
Yasuyuki Araki
2011 ◽  
Vol 15 (05n06) ◽  
pp. 301-311 ◽  
Author(s):  
Taku Hasobe ◽  
Hayato Sakai

In this review, we report the recent advances in the construction of composite molecular nanoarchitectures of porphyrins and nanoscale carbon materials such carbon nanotubes (CNT), graphenes and polycyclic aromatic hydrocarbons (PAH) for photoinduced electron transfer and light energy conversion. First, we state novel single-wall carbon nanotubes (SWCNT)-driven aggregation of protonated porphyrins to produce supramolecular assemblies in the form of macroscopic bundles. Then, photoinduced electron transfer in self-assembled single-walled carbon nanotube (SWCNT)/zinc porphyrin (ZnP) hybrids utilizing (7,6)- and (6,5)-enriched SWCNTs having different band gaps is reported. Further, we discuss the structural and photoelectrochemical properties of porphyrin-based molecular assemblies of other carbon materials such as stacked-cup carbon nanotubes (SCCNT), carbon nanohorns (CNH) and graphenes. Finally, novel supramolecular patterning formation composed of triphenylene core-centered porphyrin hexamers for electronics is discussed.


2014 ◽  
Vol 18 (10n11) ◽  
pp. 982-990 ◽  
Author(s):  
Kei Ohkubo ◽  
Yuki Kawashima ◽  
Kentaro Mase ◽  
Hayato Sakai ◽  
Taku Hasobe ◽  
...  

An electron donor–acceptor supramolecular complex was formed between an anionic zinc chlorin carboxylate ( ZnCh -) and lithium-ion-encapsulated [60]fullerene ( Li +@ C 60) by an electrostatic interaction in benzonitrile ( PhCN ). Photoinduced electron transfer in the supramolecular complex of ZnCh -/ Li +@ C 60 resulted in the formation of the charge-separated state via electron transfer from the triplet excited state of ZnCh - to Li +@ C 60. We report herein photovoltaic cells using ZnCh -/ Li +@ C 60 nanoclusters, which are assembled on the optically transparent electrode (OTE) of nanostructured SnO 2 (OTE/ SnO 2). The photoelectrochemical behavior of the nanostructured SnO 2 film of supramolecular nanoclusters of ZnCh - and Li +@ C 60 denoted as OTE/ SnO 2/( ZnCh -/ Li +@ C 60)n is significantly higher than the single component films of ZnCh - or Li +@ C 60 clusters, denoted as OTE/ SnO 2/( ZnCh -)n or OTE/ SnO 2/( Li +@ C 60)n.


2016 ◽  
Vol 4 (6) ◽  
pp. 2075-2081 ◽  
Author(s):  
Kevin G. Stamplecoskie ◽  
Abigail Swint

As light harvesting materials, Au18SR14 metal clusters are highlighted for their favourable excited-state properties leading to better photovoltaic performance.


Sign in / Sign up

Export Citation Format

Share Document