DFT-MD and vibrational anharmonicities of a phosphorylated amino acid. Success and failure

2010 ◽  
Vol 12 (14) ◽  
pp. 3501 ◽  
Author(s):  
Alvaro Cimas ◽  
Marie-Pierre Gaigeot
1981 ◽  
Vol 194 (3) ◽  
pp. 1007-1009 ◽  
Author(s):  
J Schuck ◽  
G Reichert ◽  
O G Issinger

Four non-ribosomal proteins from native 40 S ribosomal subunits with mol.wts. of 110 000, 84 000, 68 000 and 26 000 were phosphorylated in vivo when ascites cells were incubated in the presence of [32P]Pi. The 110 000-, 84 000- and 26 000-dalton proteins are identical with phosphorylated products from native 40 S subunits after phosphorylation in vitro by a cyclic nucleotide-independent protein kinase. Phosphoserine was the major phosphorylated amino acid of the proteins phosphorylated in vivo and in vitro.


2007 ◽  
Vol 129 (4) ◽  
pp. 820-827 ◽  
Author(s):  
Daniel J. Mandell ◽  
Ilya Chorny ◽  
Eli S. Groban ◽  
Sergio E. Wong ◽  
Elisheva Levine ◽  
...  

2002 ◽  
Vol 254 (2) ◽  
pp. 322-330 ◽  
Author(s):  
Johan Ekeroth ◽  
Annika Borgh ◽  
Peter Konradsson ◽  
Bo Liedberg

2019 ◽  
Vol 317 (4) ◽  
pp. F789-F804 ◽  
Author(s):  
Venkatesh Deshpande ◽  
Anika Kao ◽  
Viswanathan Raghuram ◽  
Arnab Datta ◽  
Chung-Lin Chou ◽  
...  

Vasopressin controls water balance largely through PKA-dependent effects to regulate the collecting duct water channel aquaporin-2 (AQP2). Although considerable information has accrued regarding the regulation of water and solute transport in collecting duct cells, information is sparse regarding the signaling connections between PKA and transport responses. Here, we exploited recent advancements in protein mass spectrometry to perform a comprehensive, multiple-replicate analysis of changes in the phosphoproteome of native rat inner medullary collecting duct cells in response to the vasopressin V2 receptor-selective agonist 1-desamino-8D-arginine vasopressin. Of the 10,738 phosphopeptides quantified, only 156 phosphopeptides were significantly increased in abundance, and only 63 phosphopeptides were decreased, indicative of a highly selective response to vasopressin. The list of upregulated phosphosites showed several general characteristics: 1) a preponderance of sites with basic (positively charged) amino acids arginine (R) and lysine (K) in position −2 and −3 relative to the phosphorylated amino acid, consistent with phosphorylation by PKA and/or other basophilic kinases; 2) a greater-than-random likelihood of sites previously demonstrated to be phosphorylated by PKA; 3) a preponderance of sites in membrane proteins, consistent with regulation by membrane association; and 4) a greater-than-random likelihood of sites in proteins with class I COOH-terminal PDZ ligand motifs. The list of downregulated phosphosites showed a preponderance of those with proline in position +1 relative to the phosphorylated amino acid, consistent with either downregulation of proline-directed kinases (e.g., MAPKs or cyclin-dependent kinases) or upregulation of one or more protein phosphatases that selectively dephosphorylate such sites (e.g., protein phosphatase 2A). The phosphoproteomic data were used to create a web resource for the investigation of G protein-coupled receptor signaling and regulation of AQP2-mediated water transport.


Author(s):  
Yuhuan Wang ◽  
Alexander W. Bell ◽  
Mark A. Hermodson ◽  
Peter J. Roach

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Jun Namiki ◽  
Sayuri Suzuki ◽  
Takeshi Masuda ◽  
Yasushi Ishihama ◽  
Hideyuki Okano

An intermediate filament protein, Nestin, is known as a neural stem/progenitor cell marker. It was shown to be required for the survival and self-renewal of neural stem cells according to the phenotypes of Nestin knockout mice. Nestin expression has also been reported in vascular endothelial cells, and we recently reported Nestin expression in proliferating endothelial progenitor cells, but not in mature endothelial cells. Using quantitative phosphoproteome analysis, we studied differences in phosphorylation levels between CNS Nestin in adult neural stem cells and vascular Nestin in adult bone-marrow-derived endothelial progenitor cells. We detected 495 phosphopeptides in the cell lysates of adult CNS stem/progenitor cells and identified 11 significant phosphorylated amino acid residues in the Nestin protein. In contrast, endothelial progenitor cells showed no significant phosphorylation of Nestin. We also measured neoplastic endothelial cells of the mouse brain and identified 13 phosphorylated amino acid residues in the Nestin protein. Among the 11 phosphorylated amino acids of adult CNS Nestin, five (S565, S570, S819, S883, and S886) were CNS Nestin-specific phosphorylation sites. Detection of the CNS-specific phosphorylation sites in Nestin, for example, by a phospho-specific Nestin antibody, may allow the expression of CNS Nestin to be distinguished from vascular Nestin.


Sign in / Sign up

Export Citation Format

Share Document