Ab initio simulation of UV/vis absorption spectra for atmospheric modeling: method design for medium-sized molecules

2010 ◽  
Vol 12 (33) ◽  
pp. 9726 ◽  
Author(s):  
Anna Melnichuk ◽  
Ajith Perera ◽  
Rodney J. Bartlett
2017 ◽  
Vol 96 (5) ◽  
Author(s):  
Emina Ryuo ◽  
Daisuke Wakabayashi ◽  
Akihide Koura ◽  
Fuyuki Shimojo

2013 ◽  
Vol 2 (1) ◽  
Author(s):  
A. Shamloo ◽  
A.P. Sowa

AbstractWe consider the electronic properties of a system consisting of two quantum dots in physical proximity, which we will refer to as the double-Qdot. Double-Qdots are attractive in light of their potential application to spin-based quantum computing and other electronic applications, e.g. as specialized sensors. Our main goal is to derive the essential properties of the double-Qdot from a model that is rigorous yet numerically tractable, and largely circumvents the complexities of an ab initio simulation. To this end we propose a novel Hamiltonian that captures the dynamics of a bi-partite quantum system, wherein the interaction is described via a Wiener-Hopf type operator. We subsequently describe the density of states function and derive the electronic properties of the underlying system. The analysis seems to capture a plethora of electronic profiles, and reveals the versatility of the proposed framework for double-Qdot channel modelling.


Sign in / Sign up

Export Citation Format

Share Document