scholarly journals Decarboxylative coupling reactions: a modern strategy for C–C-bond formation

2011 ◽  
Vol 40 (10) ◽  
pp. 5030 ◽  
Author(s):  
Nuria Rodríguez ◽  
Lukas J. Goossen
Synthesis ◽  
2020 ◽  
Vol 52 (12) ◽  
pp. 1719-1737 ◽  
Author(s):  
Lindsay McMurray ◽  
Thomas M. McGuire ◽  
Rachel L. Howells

This review covers recent advances in decarboxylative photocatalysis applicable to the medicinal chemist. The review is not intended to be exhaustive, but instead is focussed on transformations that could be useful in the synthesis of drug-like compounds in order to highlight the utility of this methodology in the development of new pharmaceutical candidates.1 Introduction2 C–C Bond Formation3 C–N and C–O Bond Formation4 Fluorination and Trifluoromethylation5 Hydrodecarboxylation6 Protein Functionalisation7 Conclusion


Author(s):  
M Ramu Yadav ◽  
Ruchi Sharma

Decarboxylative coupling reactions using readily available (hetero)aryl carboxylic acids is a highly efficient approach for the formation of new C-C and C-X bonds. These decarboxylative coupling reactions eliminate CO2 as...


2021 ◽  
Vol 19 (12) ◽  
pp. 2725-2730
Author(s):  
Bidisha R. Bora ◽  
Rashmi Prakash ◽  
Sabera Sultana ◽  
Sanjib Gogoi

Decarbonylative and decarboxylative coupling reactions of salicylaldehydes with isatoic anhydrides afford aryl 2-aminobenzoates.


2018 ◽  
Vol 15 (7) ◽  
pp. 882-903 ◽  
Author(s):  
Jialin Liu ◽  
Xiaoyu Xiong ◽  
Jie Chen ◽  
Yuntao Wang ◽  
Ranran Zhu ◽  
...  

Background: Among the numerous bond-forming patterns, C–C bond formation is one of the most useful tools for building molecules for the chemical industry as well as life sciences. Recently, one of the most challenging topics is the study of the direct coupling reactions via multiple C–H bond cleavage/activation processes. A number of excellent reviews on modern C–H direct functionalization have been reported by Bergman, Bercaw, Yu and others in recent years. Among the large number of available methodologies, Pdcatalyzed reactions and hypervalent iodine reagent mediated reactions represent the most popular metal and non-metal involved transformations. However, the comprehensive summary of the comparison of metal and non-metal mediated transformations is still not available. Objective: The review focuses on comparing these two types of reactions (Pd-catalyzed reactions and hypervalent iodine reagent mediated reactions) based on the ways of forming new C–C bonds, as well as the scope and limitations on the demonstration of their synthetic applications. Conclusion: Comparing the Pd-catalyzed strategies and hypervalent iodine reagent mediated methodologies for the direct C–C bond formation from activation of C-H bonds, we clearly noticed that both strategies are powerful tools for directly obtaining the corresponding pruducts. On one hand, the hypervalent iodine reagents mediated reactions are normally under mild conditions and give the molecular diversity without the presence of transition-metal, while the Pd-catalyzed approaches have a broader scope for the wide synthetic applications. On the other hand, unlike Pd-catalyzed C-C bond formation reactions, the study towards hypervalent iodine reagent mediated methodology mainly focused on the stoichiometric amount of hypervalent iodine reagent, while few catalytic reactions have been reported. Meanwhile, hypervalent iodine strategy has been proved to be more efficient in intramolecular medium-ring construction, while there are less successful examples on C(sp3)–C(sp3) bond formation. In summary, we have demonstrated a number of selected approaches for the formation of a new C–C bond under the utilization of Pd-catalyzed reaction conditions or hyperiodine reagents. The direct activations of sp2 or sp3 hybridized C–H bonds are believed to be important strategies for the future molecular design as well as useful chemical entity synthesis.


2019 ◽  
Vol 97 (7) ◽  
pp. 529-537 ◽  
Author(s):  
Richard J. Puddephatt

The isomerization and reductive elimination reactions from octahedral organometallic complexes of palladium(IV) and platinum(IV) usually occur through five-coordinate intermediates that cannot be directly detected. This paper reports a computational study of five-coordinate complexes of formulae [PtMe3(bipy)]+, [PtMe2Ph(bipy)]+, and [PtMe(CH2CMe2C6H4)(bipy)]+ (M = Pd or Pt, bipy = 2,2′-bipyridine), particularly with respect to reactivity and selectivity in reductive elimination. All of the complexes are predicted to have square pyramidal structures with the bipy and two R groups in the equatorial positions and one R group in the axial position, and axial–equatorial exchange occurs by a pairwise mechanism, with the transition state having a pinched trigonal bipyramidal (PTBP) stereochemistry, with one nitrogen and two R groups in the trigonal plane. The activation energy for isomerization is lower than that for reductive elimination in all cases. For the complexes [MMe2Ph(bipy)]+, the activation energies for reductive elimination with Me–Me or Me–Ph coupling are similar. For the complexes [MMe(CH2CMe2C6H4)(bipy)]+, the reductive elimination with Me–C6H4 bond formation from the isomer with the methyl group in the axial position is predicted and is attributed to it having the best conformation of the Me and C6H4 groups for C–C bond formation. In all cases, the selectivity for reductive elimination is similar for M = Pd or Pt, but reactivity is higher for M = Pd. The relevance of this work to selectivity in catalysis is discussed.


2017 ◽  
Vol 38 (11) ◽  
pp. 1368-1371 ◽  
Author(s):  
Ju-Hyeon Lee ◽  
Gabriel Charles Edwin Raja ◽  
Jimin Kim ◽  
Kye Chun Nam ◽  
Sunwoo Lee

Synthesis ◽  
2018 ◽  
Vol 50 (15) ◽  
pp. 2853-2866 ◽  
Author(s):  
Arkaitz Correa ◽  
Marcos Segundo

The functionalization of typically unreactive C(sp3)–H bonds holds great promise for reducing the reliance on existing functional groups while improving atom-economy and energy efficiency. As a result, this topic is a matter of genuine concern for scientists in order to achieve greener chemical processes. The site-specific modification of α-amino acid and peptides based upon C(sp3)–H functionalization still represents a great challenge of utmost synthetic importance. This short review summarizes the most recent advances in ‘Cross-Dehydrogenative Couplings’ of α-amino carbonyl compounds and peptide derivatives with a variety of nucleophilic coupling partners.1 Introduction2 C–C Bond-Forming Oxidative Couplings2.1 Reaction with Alkynes2.2 Reaction with Alkenes2.3 Reaction with (Hetero)arenes2.4 Reaction with Alkyl Reagents3 C–Heteroatom Bond-Forming Oxidative Couplings3.1 C–P Bond Formation3.2 C–N Bond Formation3.3 C–O and C–S Bond Formation4 Conclusions


Synthesis ◽  
2020 ◽  
Author(s):  
Wing-Yiu Yu ◽  
Chun-Ming Chan ◽  
Yip-Chi Chow

Catalytic C–N bond formation is one of the major research topics in synthetic chemistry owing to the ubiquity of amino groups in natural products, synthetic intermediates and pharmaceutical agents. In parallel with well-established metal-catalyzed C–N bond coupling protocols, photocatalytic reactions have recently emerged as efficient and selective alternatives for the construction of C–N bonds. In this review, the progress made on photocatalytic C–N bond coupling reactions between 2012 and February 2020 is summarized.1 Introduction1.1 General Mechanisms for Photoredox Catalysis1.2 Pioneering Work2 C(sp2)–N Bond Formation2.1 Protocols Involving an External Oxidant2.2 Oxidant-Free Protocols3 C(sp3)–N Bond Formation3.1 Direct Radical–Radical Coupling3.2 Addition Reactions to Alkenes3.3 Reductive Amination of Carbonyl Compounds3.4 Decarboxylative Amination4 Cyclization Reactions4.1 C(sp2)–N Heterocycle Formation4.2 C(sp3)–N Heterocycle Formation5 Other Examples6 Conclusion and Outlook


2014 ◽  
Vol 11 (3) ◽  
pp. 429-453 ◽  
Author(s):  
Erzsebet Jablonkai ◽  
Gyorgy Keglevich

Sign in / Sign up

Export Citation Format

Share Document