scholarly journals Cross-Dehydrogenative Coupling Reactions for the Functionalization of α-Amino Acid Derivatives and Peptides

Synthesis ◽  
2018 ◽  
Vol 50 (15) ◽  
pp. 2853-2866 ◽  
Author(s):  
Arkaitz Correa ◽  
Marcos Segundo

The functionalization of typically unreactive C(sp3)–H bonds holds great promise for reducing the reliance on existing functional groups while improving atom-economy and energy efficiency. As a result, this topic is a matter of genuine concern for scientists in order to achieve greener chemical processes. The site-specific modification of α-amino acid and peptides based upon C(sp3)–H functionalization still represents a great challenge of utmost synthetic importance. This short review summarizes the most recent advances in ‘Cross-Dehydrogenative Couplings’ of α-amino carbonyl compounds and peptide derivatives with a variety of nucleophilic coupling partners.1 Introduction2 C–C Bond-Forming Oxidative Couplings2.1 Reaction with Alkynes2.2 Reaction with Alkenes2.3 Reaction with (Hetero)arenes2.4 Reaction with Alkyl Reagents3 C–Heteroatom Bond-Forming Oxidative Couplings3.1 C–P Bond Formation3.2 C–N Bond Formation3.3 C–O and C–S Bond Formation4 Conclusions

Synthesis ◽  
2020 ◽  
Vol 52 (06) ◽  
pp. 807-818 ◽  
Author(s):  
So Won Youn

This short review describes the recent progress made on transition-metal-catalyzed annulative couplings for the synthesis of 3-methyleneisoindolin-1-ones, which are useful intermediates for the synthesis of numerous alkaloids and can be often found in a wide range of natural products and pharmaceuticals. In particular, new one-pot multiple C–C/C–N bond-forming processes for the construction of the 5-methylenepyrrol-2-one nucleus of such compounds are summarized.1 Introduction2 Intramolecular Cyclization Reactions: C3–N or C3–C3a and C–C Bond Formation3 Intermolecular Annulative Coupling Reactions3.1 C3–C3a and C3–N Bond Formation3.2 C1–C7a and C3–N Bond Formation3.3 C1–C7a and C1–N Bond Formation3.4 C1–C7a, C1–N and C3–N Bond Formation3.5 C3–C3a, C1–C7a, C1–N and C3–N Bond Formation: A Pd-Catalyzed One-Pot Sonogashira Coupling–Carbonylation–Amination–Cyclization Cascade4 Conclusion


Synthesis ◽  
2020 ◽  
Vol 52 (09) ◽  
pp. 1357-1368 ◽  
Author(s):  
Lifang Tian ◽  
Yahui Wang ◽  
Yue Zheng ◽  
Xiaoqing Shao ◽  
Velayudham Ramadoss

Considering the important applications of nitrogen-containing compounds in agrochemical materials and biomolecular drug molecules, research on methods for the construction of C–N bonds quickly and efficiently has become an important topic in synthetic chemistry. Carboxylic acids are inexpensive, stable, and non-toxic substances that are widely present in Nature, which makes them appealing as potential coupling partners for C(sp3)–N bond-forming reactions. Moreover, compared with the well-established transition-metal-catalyzed protocols, the rapid development of photoredox catalysis and electrochemical methods in recent years provides options for chemists to design new synthetic routes. In this short review, we concentrate on the decarboxylative C(sp3)–N coupling reactions mediated by visible light or electricity, with special attention on mechanistic insights.1 Introduction2 Photoredox-Mediated Decarboxylative C(sp3)–N Bond Formation2.1 Intramolecular Decarboxylation2.2 Intermolecular Decarboxylation3 Electrochemistry-Induced Decarboxylative C(sp3)–N Bond Formation3.1 Intramolecular Decarboxylation3.2 Intermolecular Decarboxylation4 Conclusions and Outlook


Synthesis ◽  
2017 ◽  
Vol 49 (20) ◽  
pp. 4586-4598 ◽  
Author(s):  
Martyn Henry ◽  
Mohamed Mostafa ◽  
Andrew Sutherland

Amination and amidation of aryl compounds using a transition-metal-catalyzed cross-coupling reaction typically involves prefunctionalization or preoxidation of either partner. In recent years, a new class of transition-metal-catalyzed cross-dehydrogenative coupling reaction has been developed for the direct formation of aryl C–N bonds. This short review highlights the substantial progress made for ortho-C–N bond formation via transition-metal-catalyzed chelation-directed aryl C–H activation and gives an overview of the challenges that remain for directed meta- and para-selective reactions.1 Introduction2 Intramolecular C–N Cross-Dehydrogenative Coupling2.1 Nitrogen Functionality as Both Coupling Partner and Directing Group2.2 Chelating-Group-Directed Intramolecular C–N Bond Formation3 Intermolecular C–N Cross-Dehydrogenative Coupling3.1 ortho-C–N Bond Formation3.1.1 Copper-Catalyzed Reactions3.1.2 Other Transition-Metal-Catalyzed Reactions3.2 meta- and para-C–N Bond Formation4 C–N Cross-Dehydrogenative Coupling of Acidic C–H Bonds5 Conclusions


2018 ◽  
Vol 15 (7) ◽  
pp. 882-903 ◽  
Author(s):  
Jialin Liu ◽  
Xiaoyu Xiong ◽  
Jie Chen ◽  
Yuntao Wang ◽  
Ranran Zhu ◽  
...  

Background: Among the numerous bond-forming patterns, C–C bond formation is one of the most useful tools for building molecules for the chemical industry as well as life sciences. Recently, one of the most challenging topics is the study of the direct coupling reactions via multiple C–H bond cleavage/activation processes. A number of excellent reviews on modern C–H direct functionalization have been reported by Bergman, Bercaw, Yu and others in recent years. Among the large number of available methodologies, Pdcatalyzed reactions and hypervalent iodine reagent mediated reactions represent the most popular metal and non-metal involved transformations. However, the comprehensive summary of the comparison of metal and non-metal mediated transformations is still not available. Objective: The review focuses on comparing these two types of reactions (Pd-catalyzed reactions and hypervalent iodine reagent mediated reactions) based on the ways of forming new C–C bonds, as well as the scope and limitations on the demonstration of their synthetic applications. Conclusion: Comparing the Pd-catalyzed strategies and hypervalent iodine reagent mediated methodologies for the direct C–C bond formation from activation of C-H bonds, we clearly noticed that both strategies are powerful tools for directly obtaining the corresponding pruducts. On one hand, the hypervalent iodine reagents mediated reactions are normally under mild conditions and give the molecular diversity without the presence of transition-metal, while the Pd-catalyzed approaches have a broader scope for the wide synthetic applications. On the other hand, unlike Pd-catalyzed C-C bond formation reactions, the study towards hypervalent iodine reagent mediated methodology mainly focused on the stoichiometric amount of hypervalent iodine reagent, while few catalytic reactions have been reported. Meanwhile, hypervalent iodine strategy has been proved to be more efficient in intramolecular medium-ring construction, while there are less successful examples on C(sp3)–C(sp3) bond formation. In summary, we have demonstrated a number of selected approaches for the formation of a new C–C bond under the utilization of Pd-catalyzed reaction conditions or hyperiodine reagents. The direct activations of sp2 or sp3 hybridized C–H bonds are believed to be important strategies for the future molecular design as well as useful chemical entity synthesis.


Synthesis ◽  
2020 ◽  
Author(s):  
Wing-Yiu Yu ◽  
Chun-Ming Chan ◽  
Yip-Chi Chow

Catalytic C–N bond formation is one of the major research topics in synthetic chemistry owing to the ubiquity of amino groups in natural products, synthetic intermediates and pharmaceutical agents. In parallel with well-established metal-catalyzed C–N bond coupling protocols, photocatalytic reactions have recently emerged as efficient and selective alternatives for the construction of C–N bonds. In this review, the progress made on photocatalytic C–N bond coupling reactions between 2012 and February 2020 is summarized.1 Introduction1.1 General Mechanisms for Photoredox Catalysis1.2 Pioneering Work2 C(sp2)–N Bond Formation2.1 Protocols Involving an External Oxidant2.2 Oxidant-Free Protocols3 C(sp3)–N Bond Formation3.1 Direct Radical–Radical Coupling3.2 Addition Reactions to Alkenes3.3 Reductive Amination of Carbonyl Compounds3.4 Decarboxylative Amination4 Cyclization Reactions4.1 C(sp2)–N Heterocycle Formation4.2 C(sp3)–N Heterocycle Formation5 Other Examples6 Conclusion and Outlook


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Kostiantyn O. Marichev ◽  
Kuiyong Dong ◽  
Lynée A. Massey ◽  
Yongming Deng ◽  
Luca De Angelis ◽  
...  

AbstractCoupling reactions of amines and alcohols are of central importance for applications in chemistry and biology. These transformations typically involve the use of a reagent, activated as an electrophile, onto which nucleophile coupling results in the formation of a carbon-nitrogen or a carbon–oxygen bond. Several promising reagents and procedures have been developed to achieve these bond forming processes in high yields with excellent stereocontrol, but few offer direct coupling without the intervention of a catalyst. Herein, we report the synthesis of chiral donor–acceptor azetines by highly enantioselective [3 + 1]-cycloaddition of enoldiazoacetates with aza-ylides and their selective coupling with nitrogen and oxygen nucleophiles via 3-azetidinones to form amino acid derivatives, including those of peptides and natural products. The overall process is general for a broad spectrum of nucleophiles, has a high degree of electronic and steric selectivity, and retains the enantiopurity of the original azetine.


Synthesis ◽  
2018 ◽  
Vol 51 (14) ◽  
pp. 2829-2838 ◽  
Author(s):  
Attila Kunfi ◽  
Gábor London

Polydopamine, a ‘mussel-inspired’ polymer, has been explored extensively in materials science as a universal coating. However, as an easily available, stable and environmentally benign material, it has recently been discovered to demonstrate catalytic applications. In this short review, we briefly discuss the main approaches employing polydopamine in the catalysis of organic transformations. These include metal/polydopamine-type systems and metal-free approaches that exploit the acid/base properties of this versatile polymer.1 Introduction2 PDA and Metal Catalysis2.1 Reduction of Nitroaryl Compounds to Anilines2.2 Reduction of Carbonyl Compounds to Alcohols2.3 Suzuki and Heck Coupling Reactions2.4 Other Reactions Catalyzed by M/PDA-Type Systems3 PDA as a Catalyst Itself4 Conclusion


2012 ◽  
Vol 8 ◽  
pp. 2004-2018 ◽  
Author(s):  
Rajendra Surasani ◽  
Dipak Kalita ◽  
A V Dhanunjaya Rao ◽  
K B Chandrasekhar

Simple and efficient procedures for palladium-catalyzed cross-coupling reactions of N-substituted 4-bromo-7-azaindole (1H-pyrrole[2,3-b]pyridine), with amides, amines, amino acid esters and phenols through C–N and C–O bond formation have been developed. The C–N cross-coupling reaction of amides, amines and amino acid esters takes place rapidly by using the combination of Xantphos, Cs2CO3, dioxane and palladium catalyst precursors Pd(OAc)2/Pd2(dba)3. The combination of Pd(OAc)2, Xantphos, K2CO3 and dioxane was found to be crucial for the C–O cross-coupling reaction. This is the first report on coupling of amides, amino acid esters and phenols with N-protected 4-bromo-7-azaindole derivatives.


Synthesis ◽  
2018 ◽  
Vol 51 (01) ◽  
pp. 135-145 ◽  
Author(s):  
Naohiko Yoshikai

This Short Review describes recent developments in cobalt-catalyzed enantioselective C–C bond-forming reactions. The article focuses on reactions that most likely involve chiral organocobalt species as crucial catalytic intermediates and their mechanistic aspects.1 Introduction2 Hydrovinylation3 C–H Functionalization4 Cycloaddition and Cyclization5 Addition of Carbon Nucleophiles6 Cross-Coupling7 Conclusion


Sign in / Sign up

Export Citation Format

Share Document