Microwave-assisted C–C bond forming cross-coupling reactions: an overview

2011 ◽  
Vol 40 (10) ◽  
pp. 4925 ◽  
Author(s):  
Vaibhav P. Mehta ◽  
Erik V. Van der Eycken
1999 ◽  
Vol 64 (11) ◽  
pp. 3885-3890 ◽  
Author(s):  
Carsten G. Blettner ◽  
Wilfried A. König ◽  
Wolfgang Stenzel ◽  
Theo Schotten

2016 ◽  
Vol 12 ◽  
pp. 2898-2905 ◽  
Author(s):  
Michal Medvecký ◽  
Igor Linder ◽  
Luise Schefzig ◽  
Hans-Ulrich Reissig ◽  
Reinhold Zimmer

Iodination of carbohydrate-derived 3,6-dihydro-2H-1,2-oxazines of type 3 using iodine and pyridine in DMF furnished 5-iodo-substituted 1,2-oxazine derivatives 4 with high efficacy. The alkenyl iodide moiety of 1,2-oxazine derivatives syn-4 and anti-4 was subsequently exploited for the introduction of new functionalities at the C-5 position by applying palladium-catalyzed carbon–carbon bond-forming reactions such as Sonogashira, Heck, or Suzuki coupling reactions as well as a cyanation reaction. These cross-coupling reactions led to a series of 5-alkynyl-, 5-alkenyl-, 5-aryl- and 5-cyano-substituted 1,2-oxazine derivatives being of considerable interest for further synthetic elaborations. This was exemplarily demonstrated by the hydrogenation of syn-21 and anti-24 and by a click reaction of a 5-alkynyl-substituted precursor.


Synthesis ◽  
2018 ◽  
Vol 51 (02) ◽  
pp. 334-358 ◽  
Author(s):  
Jean-Philip Lumb ◽  
Kenneth Esguerra

CuIII species have been invoked in many copper-catalyzed transformations including cross-coupling reactions and oxidation reactions. In this review, we will discuss seminal discoveries that have advanced our understanding of the CuI/CuIII redox cycle in the context of C–C and C–heteroatom aerobic cross-coupling reactions, as well as C–H oxidation reactions mediated by CuIII–dioxygen adducts.1 General Introduction2 Early Examples of CuIII Complexes3 Aerobic CuIII-Mediated Carbon–Heteroatom Bond-Forming Reactions4 Aerobic CuIII-Mediated Carbon–Carbon Bond-Forming Reactions5 Bioinorganic Studies of CuIII Complexes from CuI and O2 5.1 O2 Activation5.2 Biomimetic CuIII Complexes from CuI and Dioxygen5.2.1 Type-3 Copper Enzymes and Dinuclear Cu Model Complexes5.2.2 Particulate Methane Monooxygenase and Di- and Trinuclear Cu Model Complexes5.2.3 Dopamine–β-Monooxygenase and Mononuclear Cu Model Complexes6 Conclusion


RSC Advances ◽  
2019 ◽  
Vol 9 (50) ◽  
pp. 28936-28945
Author(s):  
Farzana Begum ◽  
Muhammad Ikram ◽  
Brendan Twamley ◽  
Robert J. Baker

Phosphine ligands containing a perfluorous ponytail can be sorbed onto Teflon tape and used as ligands for C–C cross coupling reactions with little leaching.


2006 ◽  
Vol 1 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Bruce H. Lipshutz ◽  
Bryan A. Frieman ◽  
Ching-Tien Lee ◽  
Asher Lower ◽  
Danielle M. Nihan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document