scholarly journals Calibrating spatio-temporal models of leukocyte dynamics against in vivo live-imaging data using approximate Bayesian computation

2012 ◽  
Vol 4 (3) ◽  
pp. 335 ◽  
Author(s):  
Juliane Liepe ◽  
Harriet Taylor ◽  
Chris P. Barnes ◽  
Maxime Huvet ◽  
Laurence Bugeon ◽  
...  
2021 ◽  
Author(s):  
Nanda R Aryal ◽  
Owen D Jones

Abstract We fit stochastic spatial-temporal models to high-resolution rainfall radar data using Approximate Bayesian Computation (ABC). As a baseline we fit a model of Cox, Isham and Northrop, which we then generalise in a variety of ways. Of central importance is the use of ABC, as it is not possible to fit models of this complexity using previous approaches. We also introduce the use of Simulated Method of Moments (SMM) to initialise the ABC fit.


2015 ◽  
Vol 24 (21) ◽  
pp. 5348-5363 ◽  
Author(s):  
Olivier Rey ◽  
Lisa Fourtune ◽  
Ivan Paz-Vinas ◽  
Géraldine Loot ◽  
Charlotte Veyssière ◽  
...  

Author(s):  
Ricardo Sousa ◽  
Joana Vasconcelo ◽  
Iván Vera ◽  
Ana Rita ◽  
Stephen Hawkins ◽  
...  

Rising sea-level following the Last Glacial Maximum lead to fragmentation of coastal limpet populations between islands of the Archipelago of Madeira. This fragmentation is reinforced by recent heavy exploitation reducing effective population size on Madeira Island. We use the limpet P. aspera to understand how the role of processes at different time scales (i.e. changes in the sea level and overexploitation) can influence the genetic composition of an extant species, relating these processes to reproductive phenology and seasonal shifts in ocean currents. Twelve microsatellite genetic markers were used. A power analysis was used to evaluate the power of the microsatellite markers to detect a signal of population differentiation. Long-term past migrations were assessed using a Bayesian Markov Montecarlo approach in the software MIGRATE-n to estimate mutation-scaled migration rates (M = m/μ; m, probability of a lineage immigrating per generation; μ, mutation rate). Two scenarios were evaluated using an Approximate Bayesian Computation (ABC) in the software DIYABC 2.1 (i) Scenario 1: considered a population scenario from a reduced Ne at time t3 to a higher Ne at time t2; and (ii) Scenario 2 considering a reduction of Ne from a time t3 to a time t2. Colonization of the archipelago by Portuguese settlers six centuries ago probably led to an important decrease in the genetic diversity of the species (Ne). Contemporary gene flow strongly support a pattern of high asymmetric connectivity explained by the reproductive phenology of the species and spatio-temporal seasonal changes in the ocean currents. Spatio-temporal reconstructions using Bayesian methods, including coalescent and Approximate Bayesian Computation (ABC) approaches, suggest changes in the migration patterns from highly symmetric to highly asymmetric connectivity with subtle population differentiation as consequence of post-glacial maximum sea level rise during the Holocene.


Author(s):  
Cecilia Viscardi ◽  
Michele Boreale ◽  
Fabio Corradi

AbstractWe consider the problem of sample degeneracy in Approximate Bayesian Computation. It arises when proposed values of the parameters, once given as input to the generative model, rarely lead to simulations resembling the observed data and are hence discarded. Such “poor” parameter proposals do not contribute at all to the representation of the parameter’s posterior distribution. This leads to a very large number of required simulations and/or a waste of computational resources, as well as to distortions in the computed posterior distribution. To mitigate this problem, we propose an algorithm, referred to as the Large Deviations Weighted Approximate Bayesian Computation algorithm, where, via Sanov’s Theorem, strictly positive weights are computed for all proposed parameters, thus avoiding the rejection step altogether. In order to derive a computable asymptotic approximation from Sanov’s result, we adopt the information theoretic “method of types” formulation of the method of Large Deviations, thus restricting our attention to models for i.i.d. discrete random variables. Finally, we experimentally evaluate our method through a proof-of-concept implementation.


2021 ◽  
Vol 62 (2) ◽  
Author(s):  
Jason D. Christopher ◽  
Olga A. Doronina ◽  
Dan Petrykowski ◽  
Torrey R. S. Hayden ◽  
Caelan Lapointe ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 312
Author(s):  
Ilze A. Auzina ◽  
Jakub M. Tomczak

Many real-life processes are black-box problems, i.e., the internal workings are inaccessible or a closed-form mathematical expression of the likelihood function cannot be defined. For continuous random variables, likelihood-free inference problems can be solved via Approximate Bayesian Computation (ABC). However, an optimal alternative for discrete random variables is yet to be formulated. Here, we aim to fill this research gap. We propose an adjusted population-based MCMC ABC method by re-defining the standard ABC parameters to discrete ones and by introducing a novel Markov kernel that is inspired by differential evolution. We first assess the proposed Markov kernel on a likelihood-based inference problem, namely discovering the underlying diseases based on a QMR-DTnetwork and, subsequently, the entire method on three likelihood-free inference problems: (i) the QMR-DT network with the unknown likelihood function, (ii) the learning binary neural network, and (iii) neural architecture search. The obtained results indicate the high potential of the proposed framework and the superiority of the new Markov kernel.


Author(s):  
Cesar A. Fortes‐Lima ◽  
Romain Laurent ◽  
Valentin Thouzeau ◽  
Bruno Toupance ◽  
Paul Verdu

2014 ◽  
Vol 64 (3) ◽  
pp. 416-431 ◽  
Author(s):  
C. Baudet ◽  
B. Donati ◽  
B. Sinaimeri ◽  
P. Crescenzi ◽  
C. Gautier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document