Novel multifunctional organic semiconductor materials based on 4,8-substituted 1,5-naphthyridine: synthesis, single crystal structures, opto-electrical properties and quantum chemistry calculation

2012 ◽  
Vol 10 (33) ◽  
pp. 6693 ◽  
Author(s):  
Kun-Yan Wang ◽  
Chen Chen ◽  
Jin-Fang Liu ◽  
Qin Wang ◽  
Jin Chang ◽  
...  
2018 ◽  
Vol 24 (5) ◽  
pp. 249-254 ◽  
Author(s):  
Lei Zhu ◽  
Haizhen Chang ◽  
Christopher L. Vavallo ◽  
Jianhui Jiang ◽  
Zebing Zeng ◽  
...  

Abstract Two new aza-acenequinone derivatives 4 and 5 were prepared by cyclocondensation of diamines 2 and 3 with bis(triisopropylsilyl)-dialkynyl-l,2-dione 1. Further reactions of compounds 4 and 5 with malononitrile using the Lehnert reagent afforded corresponding tetracyanoquinodimethane (TCNQ) derivatives 6 and 7. Compounds 4, 6 and 7 were characterized by single crystal X-ray diffraction techniques. Compounds 6 and 7 were studied electrochemically and photochemically. Density functional theory (DFT) calculations on compounds 6 and 7 indicate that both compounds have the potential to be candidates for organic semiconductor materials.


Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 182-198
Author(s):  
Dalila Rocco ◽  
Samantha Novak ◽  
Alessandro Prescimone ◽  
Edwin C. Constable ◽  
Catherine E. Housecroft

We report the preparation and characterization of 4′-([1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (1), 4′-(4′-fluoro-[1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (2), 4′-(4′-chloro-[1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (3), 4′-(4′-bromo-[1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (4), and 4′-(4′-methyl-[1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (5), and their reactions with copper(II) acetate. Single-crystal structures of the [Cu2(μ-OAc)4L]n 1D-coordination polymers with L = 1–5 have been determined, and powder X-ray diffraction confirms that the single crystal structures are representative of the bulk samples. [Cu2(μ-OAc)4(1)]n and [Cu2(μ-OAc)4(2)]n are isostructural, and zigzag polymer chains are present which engage in π-stacking interactions between [1,1′-biphenyl]pyridine units. 1D-chains nest into one another to give 2D-sheets; replacing the peripheral H in 1 by an F substituent in 2 has no effect on the solid-state structure, indicating that bifurcated contacts (H...H for 1 or H...F for 2) are only secondary packing interactions. Upon going from [Cu2(μ-OAc)4(1)]n and [Cu2(μ-OAc)4(2)]n to [Cu2(μ-OAc)4(3)]n, [Cu2(μ-OAc)4(4)]n, and [Cu2(μ-OAc)4(5)]n·nMeOH, the increased steric demands of the Cl, Br, or Me substituent induces a switch in the conformation of the 3,2′:6′,3″-tpy metal-binding domain, and a concomitant change in dominant packing interactions to py–py and py–biphenyl face-to-face π-stacking. The study underlines how the 3,2′:6′,3″-tpy domain can adapt to different steric demands of substituents through its conformational flexibility.


Author(s):  
Tapan Ghosh ◽  
Madalasa Mondal ◽  
Ratheesh Vijayaraghavan

Understanding the variations in the solid-state optical signals of organic semiconductor materials upon subtle structural rearrangement or intermolecular interactions would help to extract the best performance in their electro-optic devices....


Sign in / Sign up

Export Citation Format

Share Document