New Ce(iii) sulfate–tartrate-based MOFs: an insight into the controllable self-assembly of acentric metal–organic complexes

CrystEngComm ◽  
2013 ◽  
Vol 15 (48) ◽  
pp. 10618 ◽  
Author(s):  
Jin-Li Qi ◽  
Yue-Qing Zheng ◽  
Wei Xu ◽  
Hong-Lin Zhu ◽  
Jian-Li Lin ◽  
...  
2014 ◽  
Vol 38 (5) ◽  
pp. 2135-2143 ◽  
Author(s):  
Louise B. Hamdy ◽  
Paul R. Raithby ◽  
Lynne H. Thomas ◽  
Chick C. Wilson

A series of magnesium pyridinecarboxylic–dicarboxylic acid complexes, synthesised as precursors to potential framework materials, show a range of metal ligand and hydrogen bonding geometries. The pyridinedicarboxylic complexes show most promise as precursors for further syntheses.


2008 ◽  
pp. 1539 ◽  
Author(s):  
Scott J. Dalgarno ◽  
Nicholas P. Power ◽  
John E. Warren ◽  
Jerry L. Atwood

Author(s):  
Dandan Li ◽  
Nanqi Shao ◽  
Xianshun Sun ◽  
Guocui Zhang ◽  
Shengli Li ◽  
...  

2018 ◽  
Author(s):  
Qi Li ◽  
Adam J. Zaczek ◽  
Timothy M. Korter ◽  
J. Axel Zeitler ◽  
Michael T. Ruggiero

<div>Understanding the nature of the interatomic interactions present within the pores of metal-organic frameworks</div><div>is critical in order to design and utilize advanced materials</div><div>with desirable applications. In ZIF-8 and its cobalt analogue</div><div>ZIF-67, the imidazolate methyl-groups, which point directly</div><div>into the void space, have been shown to freely rotate - even</div><div>down to cryogenic temperatures. Using a combination of ex-</div><div>perimental terahertz time-domain spectroscopy, low-frequency</div><div>Raman spectroscopy, and state-of-the-art ab initio simulations,</div><div>the methyl-rotor dynamics in ZIF-8 and ZIF-67 are fully charac-</div><div>terized within the context of a quantum-mechanical hindered-</div><div>rotor model. The results lend insight into the fundamental</div><div>origins of the experimentally observed methyl-rotor dynamics,</div><div>and provide valuable insight into the nature of the weak inter-</div><div>actions present within this important class of materials.</div>


2018 ◽  
Author(s):  
Dominic Bara ◽  
Claire Wilson ◽  
Max Mörtel ◽  
Marat M. Khusniyarov ◽  
ben slater ◽  
...  

Phase control in the self-assembly of metal-organic frameworks (MOFs) – materials wherein organic ligands connect metal ions or clusters into network solids with potential porosity – is often a case of trial and error. Judicious control over a number of synthetic variables is required to select for the desired topology and control features such as interpenetration and defectivity, which have significant impact on physical properties and application. Herein, we present a comprehensive investigation of self-assembly in the Fe-biphenyl-4,4'-dicarboxylate system, demonstrating that coordination modulation, the addition of competing ligands into solvothermal syntheses, can reliably tune between the kinetic product, non-interpenetrated MIL-88D(Fe), and the thermodynamic product, two-fold interpenetrated MIL-126(Fe). DFT simulations reveal that correlated disorder of the terminal anions on the metal clusters in the interpentrated phase results in H-bonding between adjacent nets and is the thermodynamic driving force for its formation. Coordination modulation slows self-assembly and therefore selects the thermodynamic product MIL-126(Fe), while offering fine control over defectivity, inducing mesoporosity, but electron microscopy shows the MIL-88D(Fe) phase persists in many samples despite not being evident in diffraction experiments, suggesting its presence accounts for the lower than predicted surface areas reported for samples to date. Interpenetration control is also demonstrated by utilizing the 2,2'-bipyridine-5,5'-dicarboxylate linker; DFT simulations show that it is energetically prohibitive for it to adopt the twisted conformation required to form the interpenetrated phase, and are confirmed by experimental data, although multiple alternative phases are identified due to additional coordination of the Fe cations to the N-donors of the ligand. Finally, we introduce oxidation modulation – the concept of using metal precursors in a different oxidation state to that found in the final MOF – as a further protocol to kinetically control self-assembly. Combining coordination and oxidation modulation allows the synthesis of pristine MIL-126(Fe) with BET surface areas close to the predicted maximum capacity for the first time, suggesting that combining the two may be a powerful methodology for the controlled self-assembly of high-valent MOFs.<br><br>


Sign in / Sign up

Export Citation Format

Share Document