Influence of precursor type on non-toxic hybrid inks for high-efficiency Cu2ZnSnS4 thin-film solar cells

2014 ◽  
Vol 16 (9) ◽  
pp. 4323-4332 ◽  
Author(s):  
Kyujin Kim ◽  
Inhyuk Kim ◽  
Yunjung Oh ◽  
Daehee Lee ◽  
Kyoohee Woo ◽  
...  

A Cu2ZnSnS4 solar cell with an efficiency of 8.17% was fabricated using a non-toxic solvent-based hybrid-ink without the involvement of a complex synthesis, toxic solvents or harmful post-selenization.

2017 ◽  
Vol 10 (5) ◽  
pp. 1134-1141 ◽  
Author(s):  
Bofei Liu ◽  
Lisha Bai ◽  
Tiantian Li ◽  
Changchun Wei ◽  
Baozhang Li ◽  
...  

A highly efficient quadruple-junction silicon based thin-film solar cell with a remarkably high open-circuit voltage was demonstrated to inspire functional photoelectrical devices for environmental applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (95) ◽  
pp. 77565-77571 ◽  
Author(s):  
Thi Hiep Nguyen ◽  
Wilman Septina ◽  
Shotaro Fujikawa ◽  
Feng Jiang ◽  
Takashi Harada ◽  
...  

A CZTS-based thin film solar cell with a powder conversion efficiency of 5.8% was obtained by using facile spray pyrolysis deposition followed by annealing.


Crystals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 87 ◽  
Author(s):  
Yunyan Zhang ◽  
Huiyun Liu

Solar energy is abundant, clean, and renewable, making it an ideal energy source. Solar cells are a good option to harvest this energy. However, it is difficult to balance the cost and efficiency of traditional thin-film solar cells, whereas nanowires (NW) are far superior in making high-efficiency low-cost solar cells. Therefore, the NW solar cell has attracted great attention in recent years and is developing rapidly. Here, we review the great advantages, recent breakthroughs, novel designs, and remaining challenges of NW solar cells. Special attention is given to (but not limited to) the popular semiconductor NWs for solar cells, in particular, Si, GaAs(P), and InP.


1991 ◽  
Vol 23 (2-4) ◽  
pp. 388-393 ◽  
Author(s):  
A.K. Turner ◽  
J.M. Woodcock ◽  
M.E. Ozsan ◽  
J.G. Summers ◽  
J. Barker ◽  
...  

2017 ◽  
Vol 701 ◽  
pp. 55-62 ◽  
Author(s):  
Wei Li ◽  
Lianbo Zhao ◽  
Kailiang Zhang ◽  
Heng Sun ◽  
Yanqing Lai ◽  
...  

Author(s):  
Byungha Shin ◽  
Kejia Wang ◽  
Oki Gunawan ◽  
Kathleen B. Reuter ◽  
S. Jay Chey ◽  
...  

2011 ◽  
Vol 1327 ◽  
Author(s):  
Dong Won Kang ◽  
Jong Seok Woo ◽  
Sung Hwan Choi ◽  
Seung Yoon Lee ◽  
Heon Min. Lee ◽  
...  

ABSTRACTWe have propsed MgO/AZO bi-layer transparent conducting oxide (TCO) for thin film solar cells. From XRD analysis, it was observed that the full width at half maximum of AZO decreased when it was grown on MgO precursor. The Hall mobility of MgO/AZO bi-layer was 17.5cm2/Vs, whereas that of AZO was 20.8cm2/Vs. These indicated that the crystallinity of AZO decreased by employing MgO precursor. However, the haze (=total diffusive transmittance/total transmittance) characteristics of highly crystalline AZO was significantly improved by MgO precursor. The average haze in the visible region increased from 14.3 to 48.2%, and that in the NIR region increased from 6.3 to 18.9%. The reflectance of microcrystalline silicon solar cell was decreased and external quantum efficiency was significantly improved by applying MgO/AZO bi-layer TCO. The efficiency of microcrystalline silicon solar cell with MgO/AZO bi-layer front TCO was 6.66%, whereas the efficiency of one with AZO single TCO was 5.19%.


Sign in / Sign up

Export Citation Format

Share Document