scholarly journals Nanowires for High-Efficiency, Low-Cost Solar Photovoltaics

Crystals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 87 ◽  
Author(s):  
Yunyan Zhang ◽  
Huiyun Liu

Solar energy is abundant, clean, and renewable, making it an ideal energy source. Solar cells are a good option to harvest this energy. However, it is difficult to balance the cost and efficiency of traditional thin-film solar cells, whereas nanowires (NW) are far superior in making high-efficiency low-cost solar cells. Therefore, the NW solar cell has attracted great attention in recent years and is developing rapidly. Here, we review the great advantages, recent breakthroughs, novel designs, and remaining challenges of NW solar cells. Special attention is given to (but not limited to) the popular semiconductor NWs for solar cells, in particular, Si, GaAs(P), and InP.

2018 ◽  
Vol 8 (7) ◽  
pp. 1195 ◽  
Author(s):  
Yanru Chen ◽  
Xianglin Mei ◽  
Xiaolin Liu ◽  
Bin Wu ◽  
Junfeng Yang ◽  
...  

The CdTe nanocrystal (NC) is an outstanding, low-cost photovoltaic material for highly efficient solution-processed thin-film solar cells. Currently, most CdTe NC thin-film solar cells are based on CdSe, ZnO, or CdS buffer layers. In this study, a wide bandgap and Cd-free ZnSe NC is introduced for the first time as the buffer layer for all solution-processed CdTe/ZnSe NC hetero-junction thin-film solar cells with a configuration of ITO/ZnO/ZnSe/CdTe/MoOx/Au. The dependence of the thickness of the ZnSe NC film, the annealing temperature and the chemical treatment on the performance of NC solar cells are investigated and discussed in detail. We further develop a ligand-exchanging strategy that involves 1,2-ethanedithiol (EDT) during the fabrication of ZnSe NC film. An improved power conversion efficiency (PCE) of 3.58% is obtained, which is increased by 16.6% when compared to a device without the EDT treatment. We believe that using ZnSe NC as the buffer layer holds the potential for developing high-efficiency, low cost, and stable CdTe NC-based solar cells.


2014 ◽  
Vol 16 (9) ◽  
pp. 4323-4332 ◽  
Author(s):  
Kyujin Kim ◽  
Inhyuk Kim ◽  
Yunjung Oh ◽  
Daehee Lee ◽  
Kyoohee Woo ◽  
...  

A Cu2ZnSnS4 solar cell with an efficiency of 8.17% was fabricated using a non-toxic solvent-based hybrid-ink without the involvement of a complex synthesis, toxic solvents or harmful post-selenization.


RSC Advances ◽  
2019 ◽  
Vol 9 (59) ◽  
pp. 34207-34213 ◽  
Author(s):  
Qandeel Rehman ◽  
Aimal Daud Khan ◽  
Adnan Daud Khan ◽  
Muhammad Noman ◽  
Haider Ali ◽  
...  

Improving the photon absorption in thin-film solar cells with plasmonic nanoparticles is essential for the realization of extremely efficient cells with substantial cost reduction.


1989 ◽  
Vol 7 (4) ◽  
pp. 251-261
Author(s):  
Takashi Horigome ◽  
Hiroshi Sugimoto

Solar energy development at the New Energy and Industrial Technology Development Organization (NEDO) is concerned with reducing the cost of photovoltaic (PV) systems by promoting low cost, high efficiency solar cell manufacturing technology and photovoltaic system demonstations. The first involves reducing the cost of solar cell modules by producing better silicon materials and improving fabrication techniques. A number of demonstration systems are in operation.


MRS Bulletin ◽  
1993 ◽  
Vol 18 (10) ◽  
pp. 45-47 ◽  
Author(s):  
T. Suntola

Cadmium telluride is currently the most promising material for high efficiency, low-cost thin-film solar cells. Cadmium telluride is a compound semiconductor with an ideal 1.45 eV bandgap for direct light-to-electricity conversion. The light absorption coefficient of CdTe is high enough to make a one-micrometer-thick layer of material absorb over 99% of the visible light. Processing homogenous polycrystalline thin films seems to be less critical for CdTe than for many other compound semiconductors. The best small-area CdTe thin-film cells manufactured show more than 15% conversion efficiency. Large-area modules with aperture efficiencies in excess of 10% have also been demonstrated. The long-term stability of CdTe solar cell structures is not known in detail or in the necessary time span. Indication of good stability has been demonstrated. One of the concerns about CdTe solar cells is the presence of cadmium which is an environmentally hazardous material.


2017 ◽  
Vol 10 (5) ◽  
pp. 1134-1141 ◽  
Author(s):  
Bofei Liu ◽  
Lisha Bai ◽  
Tiantian Li ◽  
Changchun Wei ◽  
Baozhang Li ◽  
...  

A highly efficient quadruple-junction silicon based thin-film solar cell with a remarkably high open-circuit voltage was demonstrated to inspire functional photoelectrical devices for environmental applications.


1996 ◽  
Vol 426 ◽  
Author(s):  
Robert B. Hall ◽  
Allen M. Barnett ◽  
Jeff E. Cotter ◽  
David H. Ford ◽  
Alan E. Ingram ◽  
...  

AbstractThin, polycrystalline silicon solar cells have the potential for the realization of a 15%, lowcost photovoltaic product. As a photovoltaic material, polycrystalline material is abundant, benign, and electrically stable. The thin-film polycrystalline silicon solar cell design achieves high efficiency by incorporating techniques to enhance optical absorption, ensure electrical confinement, and minimize bulk recombination currents. AstroPower's approach to a thin-film polycrystalline silicon solar cell technology is based on the Silicon-Film™ process, a continuous sheet manufacturing process for the growth of thin films of polycrystalline silicon on low-cost substrates. A new barrier layer and substrate have been developed for advanced solar cell designs. External gettering with phosphorus has been employed to effect significant improvements leading to effective minority carrier diffusion lengths greater than 250 micrometers in the active silicon layer. Light trapping has been observed in 60-micrometer thick films of silicon grown on the new barrier-coated substrate. An efficiency of 12.2% in a 0.659 cm2 solar cell has been achieved with the advanced structure.


RSC Advances ◽  
2015 ◽  
Vol 5 (109) ◽  
pp. 89635-89643 ◽  
Author(s):  
Priyanka U. Londhe ◽  
Ashwini B. Rohom ◽  
Nandu B. Chaure

Highly crystalline and stoichiometric CIS thin films have been electrodeposited from non-aqueous bath at temperature 130 °C. Superstrate solar cell structure (FTO/CdS/CIS/Au) exhibited 4.5% power conversion efficiency.


2015 ◽  
Vol 1116 ◽  
pp. 51-58 ◽  
Author(s):  
Mohammad Kamal Hossain

In recent decades, due to some urgent and unavoidable issues, such as increasing energy demand, climate change, global warming, etc., the R&D of renewable energies have become inevitable to pave way the sustainable development of human society. In this regard, solar power is widely considered as the most appealing clean energy since there is no other one being as abundant as the sun. The amount of solar energy reaching our earth within one hour equals to the total annual energy need of all of humankind. Since the energy resources on Earth are being exhausted, solar energy have to serve as the main energy source in coming century and beyond. The photovoltaic solar cells developed so far have been based on silicon wafers, with this dominance likely to continue well into the future. The surge in manufacturing volume as well as emerging technologies over the last decade has resulted in greatly decreased costs. Therefore, several companies are now well below the USD 1 W−1 module manufacturing cost benchmark that was once regarded as the lowest possible with this technology. Thin-film silicon, such as hydrogenated amorphous silicon (a-Si), microcrystalline silicon (mc-Si) and related alloys, are promising materials for very low-cost solar cells. Here in this article, a brief description of thin film solar cell technologies followed by deferent state-of-art tools used for characterizing such solar cells are explored. Since characteristics of thin-film solar cells are the main ingredient in defining efficiency, the inherent properties are also mentioned alongside the characterizations.


Sign in / Sign up

Export Citation Format

Share Document