Self-assembly of kagome lattices, entangled webs and linear fibers with vibrating patchy particles in two dimensions

Soft Matter ◽  
2014 ◽  
Vol 10 (45) ◽  
pp. 9167-9176 ◽  
Author(s):  
Gustavo A. Chapela ◽  
Orlando Guzmán ◽  
José Adrián Martínez-González ◽  
Pedro Díaz-Leyva ◽  
Jacqueline Quintana-H

A vibrating version of patchy particles in two dimensions is introduced to study self-assembly of kagome lattices, disordered networks of looping structures, and linear arrays.

2011 ◽  
Vol 45 (2) ◽  
pp. 1090-1106 ◽  
Author(s):  
Cristiano De Michele ◽  
Tommaso Bellini ◽  
Francesco Sciortino

2015 ◽  
Vol 112 (50) ◽  
pp. 15308-15313 ◽  
Author(s):  
Arthur C. Newton ◽  
Jan Groenewold ◽  
Willem K. Kegel ◽  
Peter G. Bolhuis

Predicting the self-assembly kinetics of particles with anisotropic interactions, such as colloidal patchy particles or proteins with multiple binding sites, is important for the design of novel high-tech materials, as well as for understanding biological systems, e.g., viruses or regulatory networks. Often stochastic in nature, such self-assembly processes are fundamentally governed by rotational and translational diffusion. Whereas the rotational diffusion constant of particles is usually considered to be coupled to the translational diffusion via the Stokes–Einstein relation, in the past decade it has become clear that they can be independently altered by molecular crowding agents or via external fields. Because virus capsids naturally assemble in crowded environments such as the cell cytoplasm but also in aqueous solution in vitro, it is important to investigate how varying the rotational diffusion with respect to transitional diffusion alters the kinetic pathways of self-assembly. Kinetic trapping in malformed or intermediate structures often impedes a direct simulation approach of a kinetic network by dramatically slowing down the relaxation to the designed ground state. However, using recently developed path-sampling techniques, we can sample and analyze the entire self-assembly kinetic network of simple patchy particle systems. For assembly of a designed cluster of patchy particles we find that changing the rotational diffusion does not change the equilibrium constants, but significantly affects the dynamical pathways, and enhances (suppresses) the overall relaxation process and the yield of the target structure, by avoiding (encountering) frustrated states. Besides insight, this finding provides a design principle for improved control of nanoparticle self-assembly.


2019 ◽  
Vol 21 (42) ◽  
pp. 23447-23458 ◽  
Author(s):  
Manuella Cerbelaud ◽  
Khaoula Lebdioua ◽  
Công Tâm Tran ◽  
Benoît Crespin ◽  
Anne Aimable ◽  
...  

92 bead colloids are used to study the self-assembly of large surface anistropic particles.


Soft Matter ◽  
2020 ◽  
Vol 16 (27) ◽  
pp. 6443-6443
Author(s):  
Guo-Jun Liao ◽  
Carol K. Hall ◽  
Sabine H. L. Klapp

Correction for ‘Dynamical self-assembly of dipolar active Brownian particles in two dimensions’ by Guo-Jun Liao et al., Soft Matter, 2020, 16, 2208–2223, DOI: 10.1039/C9SM01539F.


2006 ◽  
Vol 110 (50) ◽  
pp. 25153-25157 ◽  
Author(s):  
Chaiwat Engtrakul ◽  
Yong-Hyun Kim ◽  
Jovan M. Nedeljković ◽  
S. Phil Ahrenkiel ◽  
Katherine E. H. Gilbert ◽  
...  

2019 ◽  
Vol 5 (9) ◽  
pp. eaaw5912 ◽  
Author(s):  
Evan Pretti ◽  
Hasan Zerze ◽  
Minseok Song ◽  
Yajun Ding ◽  
Runfang Mao ◽  
...  

Nucleation and growth of crystalline phases play an important role in a variety of physical phenomena, ranging from freezing of liquids to assembly of colloidal particles. Understanding these processes in the context of colloidal crystallization is of great importance for predicting and controlling the structures produced. In many systems, crystallites that nucleate have structures differing from those expected from bulk equilibrium thermodynamic considerations, and this is often attributed to kinetic effects. In this work, we consider the self-assembly of a binary mixture of colloids in two dimensions, which exhibits a structural transformation from a non–close-packed to a close-packed lattice during crystal growth. We show that this transformation is thermodynamically driven, resulting from size dependence of the relative free energy between the two structures. We demonstrate that structural selection can be entirely thermodynamic, in contrast to previously considered effects involving growth kinetics or interaction with the surrounding fluid phase.


Soft Matter ◽  
2019 ◽  
Vol 15 (46) ◽  
pp. 9394-9404
Author(s):  
Tobias M. Hain ◽  
Gerd E. Schröder-Turk ◽  
Jacob J. K. Kirkensgaard

Star copolymers on a sphere self-assemble into patchy particles with structure and coordination corresponding to those found in the famous Thomson problem.


2014 ◽  
Vol 53 (5) ◽  
pp. 317-326 ◽  
Author(s):  
Nabil Laachi ◽  
Tatsuhiro Iwama ◽  
Kris T. Delaney ◽  
David Shykind ◽  
Corey J. Weinheimer ◽  
...  

2010 ◽  
Vol 22 (10) ◽  
pp. 104103 ◽  
Author(s):  
Wouter K den Otter ◽  
Marten R Renes ◽  
W J Briels

Sign in / Sign up

Export Citation Format

Share Document