A three-dimensional Mn3O4 network supported on a nitrogenated graphene electrocatalyst for efficient oxygen reduction reaction in alkaline media

2014 ◽  
Vol 2 (35) ◽  
pp. 14493-14501 ◽  
Author(s):  
Santosh Kumar Bikkarolla ◽  
Fengjiao Yu ◽  
Wuzong Zhou ◽  
Paul Joseph ◽  
Peter Cumpson ◽  
...  

A 3D hierarchical Mn3O4 nanoflake structure supported on nitrogenated reduced graphene oxide (NrGO), with excellent oxygen reduction in alkaline medium, was developed by electrodeposition. High performance is attributed to poor nanoflake crystallinity and strong nanoflake–NrGO coupling.

NANO ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. 1650126 ◽  
Author(s):  
GuanHua Jin ◽  
Suqin Liu ◽  
Yaomin Li ◽  
Yang Guo ◽  
Zhiying Ding

Development of efficient electrocatalysts for the oxygen reduction reaction (ORR) remains a key issue for the commercialization of metal-air batteries. In this study, the novel structured Co3O4 nanoparticles-modified [Formula: see text]-MnO2 nanorods supported on reduced graphene oxide (Co3O4-MnO2/rGO) were synthesized with varying amounts of [Formula: see text]-MnO2 via a facile two-step hydrothermal method. The relationship between the physical properties and the electrochemical results was investigated using X-ray diffraction spectrum, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammograms, electrochemical impedance spectroscopy and rotating disk electrode. The as-prepared Co3O4–MnO2 nanohybrid exhibits enhanced catalytic activity for ORR under alkaline condition compared with MnO2/rGO and Co3O4/rGO. Furthermore, it mainly favors a direct 4e-reaction pathway for ORR, which is attributed to the well-designed structure, the synergistic effect between Co3O4 and [Formula: see text]-MnO2, and the covalent coupling between the Co3O4-MnO2 and reduced graphene oxide. The role of Co3O4 in Co3O4–MnO2 hybrid for catalyzing ORR also has been illustrated by varying the mass ratio of Co3O4 and MnO2, which reveals that the Co3O4–MnO2 with the ratio of 1:1 has better catalytic activity.


RSC Advances ◽  
2019 ◽  
Vol 9 (42) ◽  
pp. 24654-24658 ◽  
Author(s):  
Zubair Ahmed ◽  
Ritu Rai ◽  
Rajinder Kumar ◽  
Takahiro Maruyama ◽  
Vivek Bagchi

One-step hydrothermal growth of FePO4 nanoparticles (15–25 nm) uniformly decorated on the P-doped reduced graphene oxide (PRGO) was studied for oxygen reduction reaction (ORR) activity.


2017 ◽  
Vol 727 ◽  
pp. 322-326 ◽  
Author(s):  
Yi Li ◽  
Juan Yang ◽  
Kai Xu

High platinum requirements in electrocatalyst bring about huge expenditure, which hinders the commercialization and wide adoption of proton electrolyte membrane fuel cells (PEMFCs). Therefore, developing new fuel cell catalysts with excellent oxygen reduction reaction (ORR) performance may be a potential way to solve this drawback. In this paper, a facile ultrasonic-assisted method is introduced to synthesize bimetallic PtCo nanoparticles supported on three-dimensional reduced graphene oxide (Pt-Co/3DrGO). Results indicate that PtCo nanoparticles with alloy structure, small size (12.4 nm), and uniform distribution are well-dispersed onto rGO sheets. With 3D porous structure, the fabricated Pt-Co/3DrGO catalyst exhibits better ORR activity and long-term stability than that of commercial Pt/C (20 wt%). The increased electrocatalytic activity is attributed to the formation of 3D porous structure together with the effective surface structure and the highly uniform distribution of the PtCo alloy nanoparticles on rGO sheets.


Sign in / Sign up

Export Citation Format

Share Document