Facile synthesis of nitrogen and fluorine co-doped carbon materials as efficient electrocatalysts for oxygen reduction reactions in air-cathode microbial fuel cells

2015 ◽  
Vol 3 (13) ◽  
pp. 6873-6877 ◽  
Author(s):  
Kai Meng ◽  
Qin Liu ◽  
Yiyin Huang ◽  
Yaobing Wang

Nitrogen and fluorine co-doped carbon black (BP-NF) was prepared via the direct pyrolysis of a mixture of polytetrafluoroethylene (PTFE) and BP-2000 under an ammonium atmosphere for high efficient ORR electrocatalysis in the air-cathode of microbial fuel cells.

RSC Advances ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 848-855 ◽  
Author(s):  
Kang Lv ◽  
Hua Zhang ◽  
Shuiliang Chen

Nitrogen and phosphorus co-doped carbon modified activated carbon shows decreased ORR over-potential, thus enhanced ORR electrocatalytic activity in the air-cathode of microbial fuel cells compared to pristine AC.


2020 ◽  
Vol 16 (4) ◽  
pp. 625-638
Author(s):  
Leila Samiee ◽  
Sedigheh Sadegh Hassani

Background: Porous carbon materials are promising candidate supports for various applications. In a number of these applications, doping of the carbon framework with heteroatoms provides a facile route to readily tune the carbon properties. The oxygen reduction reaction (ORR), where the reaction can be catalyzed without precious metals is one of the common applications for the heteroatom-doped carbons. Therefore, heteroatom doped catalysts might have a promising potential as a cathode in Microbial fuel cells (MFCs). MFCs have a good potential to produce electricity from biological oxidization of wastes at the anode and chemical reduction at the cathode. To the best of our knowledge, no studies have been yet reported on utilizing Sulfur trioxide pyridine (STP) and CMK-3 for the preparation of (N and S) doped ordered porous carbon materials. The presence of highly ordered mesostructured and the synergistic effect of N and S atoms with specific structures enhance the oxygen adsorption due to improving the electrocatalytic activity. So the optimal catalyst, with significant stability and excellent tolerance of methanol crossover can be a promising candidate for even other storage and conversion devices. Methods: The physico-chemical properties of the prepared samples were determined by Small Angle X-ray Diffraction (SAXRD), N2 sorption-desorption, Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM) and X-ray Photoelectron Spectroscopy (XPS). The prepared samples were further applied for oxygen reduction reaction (ORR) and the optimal cathode was tested with the Microbial Fuel Cell (MFC) system. Furthermore, according to structural analysis, The HRTEM, and SAXRD results confirmed the formation of well-ordered hexagonal (p6mm) arrays of mesopores in the direction of (100). The EDS and XPS approved that N and S were successfully doped into the CMK-3 carbon framework. Results: Among all the studied CMK-3 based catalysts, the catalyst prepared by STP precursor and pyrolysis at 900°C exhibited the highest ORR activity with the onset potential of 1.02 V vs. RHE and 4 electron transfer number per oxygen molecule in 0.1 M KOH. The high catalyst durability and fuel-crossover tolerance led to stable performance of the optimal cathode after 5000 s operation, while the Pt/C cathode-based was considerably degraded. Finally, the MFC system with the optimal cathode displayed 43.9 mW·m-2 peak power density showing even reasonable performance in comparison to a Pt/C 20 wt.%.cathode. Conclusions: The results revealed that the synergistic effect of nitrogen and sulfur co-doped on the carbon substrate structure leads to improvement in catalytic activity. Also, it was clearly observed that the porous structure and order level of the carbon substrate could considerably change the ORR performance.


2014 ◽  
Vol 70 (10) ◽  
pp. 1610-1616 ◽  
Author(s):  
Huanan Wu ◽  
Min Lu ◽  
Lin Guo ◽  
Leonard Guan Hong Bay ◽  
Zheng Zhang ◽  
...  

Polyelectrolyte–single wall carbon nanotube (SCNT) composites are prepared by a solution-based method and used as metal-free cathode catalysts for oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). In this study, two types of polyelectrolytes, polydiallyldimethylammonium chloride (PDDA) and poly[bis(2-chloroethyl)ether-alt-1,3-bis[3-(dimethylamino)propyl]urea] (PEPU) are applied to decorate the SCNTs and the resulting catalysts exhibit remarkable catalytic ability toward ORR in MFC applications. The enhanced catalytic ability could be attributed to the positively charged quaternary ammonium sites of polyelectrolytes, which increase the oxygen affinity of SCNTs and reduce activation energy in the oxygen reduction process. It is also found that PEPU–SCNT composite-based MFCs show efficient performance with maximum power density of 270.1 mW m−2, comparable to MFCs with the benchmark Pt/C catalyst (375.3 mW m−2), while PDDA–SCNT composite-based MFCs produce 188.9 mW m−2. These results indicate that PEPU–SCNT and PDDA–SCNT catalysts are promising candidates as metal-free cathode catalysts for ORR in MFCs and could facilitate MFC scaling up and commercialization.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3846 ◽  
Author(s):  
Xiao Luo ◽  
Wuli Han ◽  
Han Ren ◽  
Qingzuo Zhuang

Oxygen reduction reaction (ORR) provides a vital role for microbial fuel cells (MFCs) due to its slow reaction kinetics compared with the anodic oxidation reaction. How to develop new materials with low cost, high efficacy, and eco-friendliness which could replace platinum-based electrocatalysis is a challenge that we have to resolve. In this work, we accomplished this successfully by means of a facile strategy to synthesize a metallic organic framework-derived Fe, N, S co-doped carbon with FeS as the main phase. The Fe/S@N/C-0.5 catalyst demonstrated outstandingly enhanced ORR activity in neutral PBS and alkaline media, compared to that of commercial 20% Pt-C catalyst. Here, we started-up and operated two parallel single-chamber microbial fuel cells of an air cathode, and those cathode catalysts were Fe/S@N/C-0.5 and commercial Pt-C (20% Pt), respectively. Scanning electron microscopy (SEM) elaborated that the Fe/S@N/C-0.5 composite did not change the polyhedron morphology of ZIF-8. According to X-ray diffractometry(XRD) curves, the main crystal phase of the resulted Fe/S@N/C-0.5 was FeS. The chemical environment of N, S, and Fe which are anticipated to be the high-efficiency active sites of ORR for MFCs were investigated by X-ray photoelectron spectroscopic(XPS). Nitrogen adsorption/desorption techniques were used to calculate the pore diameter distribution. In brief, the obtained Fe/S@N/C-0.5 material exhibited a pronounced reduction potential at 0.861 V (versus Reversible Hydrogen Electrode(RHE)) in 0.1M KOH solution and –0.03 V (vs. SCE) in the PBS solution, which both outperform the benchmark platinum-based catalysts. Fe/S@N/C-0.5-MFC had a higher Open Circuit Voltage(OCV) (0.71 V), stronger maximum power density (1196 mW/m2), and larger output voltage (0.47 V) than the Pt/C-MFC under the same conditions.


Sign in / Sign up

Export Citation Format

Share Document