Drug delivery systems based on pharmaceutically active ionic liquids and biocompatible poly(lactic acid)

2014 ◽  
Vol 2 (20) ◽  
pp. 3133-3141 ◽  
Author(s):  
Claire Jouannin ◽  
Corine Tourné-Péteilh ◽  
Vincent Darcos ◽  
Tahmer Sharkawi ◽  
Jean-Marie Devoisselle ◽  
...  

API-ILs were encapsulated into biocompatible PLLA. The morphology and crystallinity of the resulting membranes can be tuned by varying the IL nature and content leading to controlled release.

2013 ◽  
Vol 33 (7) ◽  
pp. 4002-4008 ◽  
Author(s):  
Ana Paula Serafini Immich ◽  
Manuel Lis Arias ◽  
Núria Carreras ◽  
Rafael Luís Boemo ◽  
José Antonio Tornero

2013 ◽  
Vol 21 (4) ◽  
pp. 1064-1071 ◽  
Author(s):  
Nita Tudorachi ◽  
Rodica Lipsa ◽  
Cornelia Vasile ◽  
Fanica Mustata

2021 ◽  
Vol 18 ◽  
Author(s):  
Hitesh Chopra ◽  
Inderbir Singh ◽  
Sandeep Kumar ◽  
Tanima Bhattacharya ◽  
Md. Habibur Rahman ◽  
...  

: The conventional drug delivery systems have a long list of issues of repeated dosing and toxicity arising due to it. The hydrogels are the answer to them and offer a result that minimizes such activities and optimizes therapeutic benefits. The hydrogels proffer tunable properties that can withstand degradation, metabolism, and controlled release moieties. Some of the areas of applications of hydrogels involve wound healing, ocular systems, vaginal gels, scaffolds for tissue, bone engineering, etc. They consist of about 90% of the water that makes them suitable bio-mimic moiety. Here, we present a birds-eye view of various perspectives of hydrogels, along with their applications.


Sign in / Sign up

Export Citation Format

Share Document