Cellular effects of magnetic nanoparticles explored by atomic force microscopy

2015 ◽  
Vol 3 (9) ◽  
pp. 1284-1290 ◽  
Author(s):  
Hongli Mao ◽  
Jingchao Li ◽  
Ida Dulińska-Molak ◽  
Naoki Kawazoe ◽  
Yoshihiko Takeda ◽  
...  

Atomic force microscopy (AFM) was used to explore the cellular effects caused by magnetic nanoparticles.

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2486
Author(s):  
Marc Fuhrmann ◽  
Anna Musyanovych ◽  
Ronald Thoelen ◽  
Sibylle von Bomhard ◽  
Hildegard Möbius

Encapsulated magnetic nanoparticles are of increasing interest for biomedical applications. However, up to now, it is still not possible to characterize their localized magnetic properties within the capsules. Magnetic Force Microscopy (MFM) has proved to be a suitable technique to image magnetic nanoparticles at ambient conditions revealing information about the spatial distribution and the magnetic properties of the nanoparticles simultaneously. However, MFM measurements on magnetic nanoparticles lead to falsifications of the magnetic MFM signal due to the topographic crosstalk. The origin of the topographic crosstalk in MFM has been proven to be capacitive coupling effects due to distance change between the substrate and tip measuring above the nanoparticle. In this paper, we present data fusion of the topography measurements of Atomic Force Microscopy (AFM) and the phase image of MFM measurements in combination with the theory of capacitive coupling in order to eliminate the topographic crosstalk in the phase image. This method offers a novel approach for the magnetic visualization of encapsulated magnetic nanoparticles.


2000 ◽  
Vol 10 (1-2) ◽  
pp. 15
Author(s):  
Eugene Sprague ◽  
Julio C. Palmaz ◽  
Cristina Simon ◽  
Aaron Watson

Sign in / Sign up

Export Citation Format

Share Document