Solution-processed new porphyrin-based small molecules as electron donors for highly efficient organic photovoltaics

2015 ◽  
Vol 51 (77) ◽  
pp. 14439-14442 ◽  
Author(s):  
Song Chen ◽  
Liangang Xiao ◽  
Xunjin Zhu ◽  
Xiaobing Peng ◽  
Wai-Kwok Wong ◽  
...  

A series of new A–D–A structural 5,15-dialkylated porphyrin-cored small molecules have been developed as donors in bulk heterojunction organic solar cells, and the highest power conversion efficiency of 6.49% has been achieved.

2015 ◽  
Vol 17 (40) ◽  
pp. 26580-26588 ◽  
Author(s):  
Thaksen Jadhav ◽  
Rajneesh Misra ◽  
S. Biswas ◽  
Ganesh D. Sharma

The power conversion efficiency of an optimized3a:PC71BM active layer based device is 5.05%.


2016 ◽  
Vol 4 (13) ◽  
pp. 4952-4961 ◽  
Author(s):  
Jianhua Chen ◽  
Linrui Duan ◽  
Manjun Xiao ◽  
Qiong Wang ◽  
Bin Liu ◽  
...  

A series of Ar(A–D)2 type small molecules containing a pyrene core were synthesized. A significantly improved power conversion efficiency of 5.88% was obtained for ThDPP2Py based organic solar cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Wageh ◽  
Mahfoudh Raïssi ◽  
Thomas Berthelot ◽  
Matthieu Laurent ◽  
Didier Rousseau ◽  
...  

AbstractPoly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) mixed with single-wall nanotubes (SWNTs) (10:1) and doped with (0.1 M) perchloric acid (HClO4) in a solution-processed film, working as an excellent thin transparent conducting film (TCF) in organic solar cells, was investigated. This new electrode structure can be an outstanding substitute for conventional indium tin oxide (ITO) for applications in flexible solar cells due to the potential of attaining high transparency with enhanced conductivity, good flexibility, and good durability via a low-cost process over a large area. In addition, solution-processed vanadium oxide (VOx) doped with a small amount of PEDOT-PSS(PH1000) can be applied as a hole transport layer (HTL) for achieving high efficiency and stability. From these viewpoints, we investigate the benefit of using printed SWNTs-PEDOT-PSS doped with HClO4 as a transparent conducting electrode in a flexible organic solar cell. Additionally, we applied a VOx-PEDOT-PSS thin film as a hole transporting layer and a blend of PTB7 (polythieno[3,4-b] thiophene/benzodithiophene): PC71BM (phenyl-C71-butyric acid methyl ester) as an active layer in devices. Zinc oxide (ZnO) nanoparticles were applied as an electron transport layer and Ag was used as the top electrode. The proposed solar cell structure showed an enhancement in short-circuit current, power conversion efficiency, and stability relative to a conventional cell based on ITO. This result suggests a great carrier injection throughout the interfacial layer, high conductivity and transparency, as well as firm adherence for the new electrode.


2020 ◽  
Vol 10 (17) ◽  
pp. 5743
Author(s):  
Shabaz Alam ◽  
M. Shaheer Akhtar ◽  
Abdullah ◽  
Eun-Bi Kim ◽  
Hyung-Shik Shin ◽  
...  

A new and effective planar D-π-A configured small organic molecule (SOM) of 2-5-(3,5-dimethoxystyryl)thiophen-2-yl)methylene)-1H-indene-1,3(2H)-dione, abbreviated as DVB-T-ID, was synthesized using 1,3-indanedione acceptor and dimethoxy vinylbenzene donor units, connected through a thiophene π-spacer. The presence of a dimethoxy vinylbenzene unit and π-spacer in DVB-T-ID significantly improved the absorption behavior by displaying maximum absorbance at ~515 nm, and the reasonable band gap was estimated as ~2.06 eV. The electronic properties revealed that DVB-T-ID SOMs exhibited promising HOMO (−5.32 eV) and LUMO (−3.26 eV). The synthesized DVB-T-ID SOM was utilized as donor material for fabricating solution-processed bulk heterojunction organic solar cells (BHJ-OSCs) and showed a reasonable power conversion efficiency (PCE) of ~3.1% with DVB-T-ID:PC61BM (1:2, w/w) active layer. The outcome of this work clearly reflects that synthesized DVB-T-ID based on 1,3-indanedione units is a promising absorber (donor) material for BHJ-OSCs.


2017 ◽  
Vol 5 (30) ◽  
pp. 15529-15533 ◽  
Author(s):  
Ruchika Mishra ◽  
Ramprasad Regar ◽  
Rahul Singhal ◽  
Piyush Panini ◽  
Ganesh D. Sharma ◽  
...  

We demonstrate here the effect of metals in the porphyrin core of a PBI–porphyrin conjugate on the power conversion efficiency.


2017 ◽  
Vol 5 (44) ◽  
pp. 23067-23077 ◽  
Author(s):  
Keisuke Ogumi ◽  
Takafumi Nakagawa ◽  
Hiroshi Okada ◽  
Ryohei Sakai ◽  
Huan Wang ◽  
...  

Acceptor–donor–acceptor conjugated magnesium porphyrins showed a power conversion efficiency of 5.73%, high open-circuit voltage of 0.79 V, or an extended incident photon-to-current conversion efficiency spectrum to 1100 nm, depending on the substituents.


2020 ◽  
Vol 8 (12) ◽  
pp. 6083-6091 ◽  
Author(s):  
Xinjun He ◽  
Yong Wang ◽  
Haifei Lu ◽  
Dan Ouyang ◽  
Zhanfeng Huang ◽  
...  

Isolated silver nanoparticles are sintered by a compatible self-sintering strategy to form connected silver back electrode. The highest power conversion efficiency of 9.73% among reported evaporation-free organic solar cells is achieved.


2015 ◽  
Vol 3 (5) ◽  
pp. 1910-1914 ◽  
Author(s):  
Huitao Bai ◽  
Yifan Wang ◽  
Pei Cheng ◽  
Jiayu Wang ◽  
Yao Wu ◽  
...  

A novel small molecule based on indacenodithiophene and 1,1-dicyanomethylene-3-indanone was synthesized and used as an electron acceptor in solution processed organic solar cells, which exhibited a power conversion efficiency as high as 3.93%.


Sign in / Sign up

Export Citation Format

Share Document