Nanosized LiNi1−xFexPO4embedded in a mesoporous carbon matrix for high-performance electrochemical water splitting

2015 ◽  
Vol 51 (87) ◽  
pp. 15815-15818 ◽  
Author(s):  
Shaojun Ma ◽  
Qing Zhu ◽  
Zhi Zheng ◽  
Wenlou Wang ◽  
Dongming Chen

This work reports for the first time LiNi1−xFexPO4@C nanocomposites as highly effective catalysts for electrochemical oxygen evolution reaction (OER).

Nanoscale ◽  
2021 ◽  
Author(s):  
Haibin Ma ◽  
ChangNing SUN ◽  
Zhili Wang ◽  
Qing Jiang

It is of great importance to develop efficient and low-cost oxygen evolution reaction (OER) electrocatalysts for electrochemical water splitting. Herein, S doped NiCoVOx nanosheets grown on Ni-Foam (S-NiCoVOx/NF) with modified...


RSC Advances ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 5701-5710 ◽  
Author(s):  
Abdul Qayoom Mugheri ◽  
Aneela Tahira ◽  
Umair Aftab ◽  
Muhammad Ishaq Abro ◽  
Saleem Raza Chaudhry ◽  
...  

Due to the increasing energy consumption, designing efficient electrocatalysts for electrochemical water splitting is highly demanded.


Nanoscale ◽  
2019 ◽  
Vol 11 (42) ◽  
pp. 20228-20237 ◽  
Author(s):  
Xiaopei Xu ◽  
Haoxiang Xu ◽  
Daojian Cheng

MoS2 edges exhibit good hydrogen evolution reaction (HER) activity but poor oxygen evolution reaction (OER) activity.


2019 ◽  
Vol 7 (46) ◽  
pp. 26410-26420 ◽  
Author(s):  
Maira Sadaqat ◽  
Laraib Nisar ◽  
Noor-Ul-Ain Babar ◽  
Fayyaz Hussain ◽  
Muhammad Naeem Ashiq ◽  
...  

Electrochemical water splitting is economically unviable due to the sluggish kinetics of the anodically uphill oxygen evolution reaction (OER).


Nanoscale ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 3378-3385 ◽  
Author(s):  
Changhong Zhan ◽  
Zheng Liu ◽  
Yang Zhou ◽  
Mingliang Guo ◽  
Xiaolin Zhang ◽  
...  

Electrochemical water splitting requires an efficient water oxidation catalyst to accelerate the oxygen evolution reaction (OER).


Nanoscale ◽  
2020 ◽  
Author(s):  
Ning Xie ◽  
Dong-Dong Ma ◽  
Xintao Wu ◽  
Qi-Long Zhu

Constructing high-performance and cost-effective electrocatalysts for water oxidation, particularly for overall water splitting is extremely needed, whereas still challenging. Herein, based on an economical and facile one-step surface sulfurization strategy,...


Nanoscale ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 3129-3134 ◽  
Author(s):  
Suli Liu ◽  
Chenjing Che ◽  
Haiyan Jing ◽  
Jun Zhao ◽  
Xueqin Mu ◽  
...  

Featuring surface reorganization and phase transformation simultaneously on cobalt chalcogenide, Co0.37S0.38P0.02 exhibits excellent OER and HER activity and stability. Furthermore, it shows high performance towards overall water splitting.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3010
Author(s):  
Sergio Battiato ◽  
Mario Urso ◽  
Salvatore Cosentino ◽  
Anna Lucia Pellegrino ◽  
Salvo Mirabella ◽  
...  

The low efficiency of water electrolysis mostly arises from the thermodynamic uphill oxygen evolution reaction. The efficiency can be greatly improved by rationally designing low-cost and efficient oxygen evolution anode materials. Herein, we report the synthesis of Ni–P alloys adopting a facile electroless plating method under mild conditions on nickel substrates. The relationship between the Ni–P properties and catalytic activity allowed us to define the best conditions for the electroless synthesis of highperformance Ni–P catalysts. Indeed, the electrochemical investigations indicated an increased catalytic response by reducing the thickness and Ni/P ratio in the alloy. Furthermore, the Ni–P catalysts with optimized size and composition deposited on Ni foam exposed more active sites for the oxygen evolution reaction, yielding a current density of 10 mA cm−2 at an overpotential as low as 335 mV, exhibiting charge transfer resistances of only a few ohms and a remarkable turnover frequency (TOF) value of 0.62 s−1 at 350 mV. The present study provides an advancement in the control of the electroless synthetic approach for the design and large-scale application of high-performance metal phosphide catalysts for electrochemical water splitting.


Sign in / Sign up

Export Citation Format

Share Document