Bimetallic coordination polymer as a promising anode material for lithium-ion batteries

2016 ◽  
Vol 52 (10) ◽  
pp. 2035-2038 ◽  
Author(s):  
Chao Li ◽  
Xiaoshi Hu ◽  
Xiaobing Lou ◽  
Qun Chen ◽  
Bingwen Hu

Bimetallic coordination polymers (BiCPs) with Zn and Co were synthesized by a simple method and applied as anode materials for the first time. When used as anode materials in LIBs, the as-prepared BiCPs exhibit ultra-high capacity and impressive rate capability.

Author(s):  
Guangfeng Shi ◽  
Jiale Zhou ◽  
Rong Zeng ◽  
Bing Na ◽  
Shufen Zou

Abstract Porous structures in anode materials are of importance to accommodate volume dilation of active matters. In the present case, a carbon nanoporous framework is hydrothermally synthesized from glucose in the presence of graphene oxide (GO), together with in situ active Fe3O4 nanoparticles within it. The composite anode material has outstanding electrochemical performance, including high specific capacity, excellent cyclic stability and superior rate capability. The specific capacity stays at 830.8 mAhg−1 after 200 cycles at 1 A/g, equivalent to a high capacity retention of 88.7%. The findings provide valuable clues to tailor morphology of hydrothermally carbonized glucose for advanced composite anode materials of lithium-ion batteries.


2018 ◽  
Vol 5 (3) ◽  
pp. 559-567 ◽  
Author(s):  
Yanming Wang ◽  
Jia Li ◽  
Sheng Chen ◽  
Bing Li ◽  
Guangping Zhu ◽  
...  

Monodisperse NiCo2O4 porous microcubes were used as anode materials for lithium-ion batteries, and they exhibit outstanding rate capability and cycling stability.


NANO ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. 1850139 ◽  
Author(s):  
Hao Wen ◽  
Changdong Shi ◽  
Yuanrui Gao ◽  
Hongren Rong ◽  
Yanyong Sha ◽  
...  

Co3O4 nanocrystals have been synthesized via an ordinary one-step calcination of a cobalt-based 2D coordination polymer [Co(tfbdc)(4,4[Formula: see text]-bpy)(H2O)2]. As an anode material for lithium-ion batteries, the obtained Co3O4 nanocrystals exhibit high reversible capacity, excellent cyclic stability and better rate capability. The reversible capacity of the Co3O4 nanocrystals maintains 713[Formula: see text]mA[Formula: see text]h[Formula: see text]g[Formula: see text] after 50 cycles at a current density of 50[Formula: see text]mA[Formula: see text]g[Formula: see text]. Our results confirm that searching for metal oxides nanomaterials used as anode materials of lithium ion batteries via the calcinations of 2D coordination polymer is a new route.


2017 ◽  
Vol 53 (37) ◽  
pp. 5204-5207 ◽  
Author(s):  
Yuan-Yuan Wang ◽  
Mi Zhang ◽  
Shun-Li Li ◽  
Shu-Ran Zhang ◽  
Wei Xie ◽  
...  

Two novel isostructural polyoxometalate (POM)-based coordination polymers were obtained. The results reveal that NENU-507 could be directly utilized as an anode material for lithium-ion batteries with outstanding performance.


2015 ◽  
Vol 3 (12) ◽  
pp. 6392-6401 ◽  
Author(s):  
Bangjun Guo ◽  
Ke Yu ◽  
Hao Fu ◽  
Qiqi Hua ◽  
Ruijuan Qi ◽  
...  

Firework-shaped TiO2 microspheres embedded with few-layer MoS2 are prepared by a novel strategy, and the composite electrode exhibits excellent cycling performance, high capacity and rate capability compared to pure MoS2 and TiO2 electrodes.


2014 ◽  
Vol 2 (32) ◽  
pp. 13069-13074 ◽  
Author(s):  
Xin Xu ◽  
Bitao Dong ◽  
Shujiang Ding ◽  
Chunhui Xiao ◽  
Demei Yu

NiCoO2 nanosheets@amorphous CNT composites show enhanced cycling performance and rate capability as anode materials for lithium-ion batteries.


2013 ◽  
Vol 06 (03) ◽  
pp. 1350033 ◽  
Author(s):  
GUIJING LI ◽  
YANYAN SONG ◽  
LINPING ZHANG ◽  
XIN WEI ◽  
XIAOPING SONG ◽  
...  

A novel and simple method has been developed to prepare the Cu-Si composite as anode material for lithium-ion batteries. Nanoporous Cu-Si composite with pore sizes of 1~30 nm was prepared by dealloying the melt-spun Al-Cu-Si-Ce ribbons in a 5 wt.% HCl solution. Electrochemical tests revealed that the nanoporous Cu-Si electrodes exhibited highly reversible capacity of 2317 mAhg-1 and retained a capacity of 1030 mAhg-1 over 20 cycles. The excellent electrochemical performance is attributed to the unique porous structure of the Cu-Si composite. Our results demonstrate that this novel composite is a promising anode candidate for high-capacity rechargeable lithium-ion batteries.


2015 ◽  
Vol 3 (16) ◽  
pp. 8683-8692 ◽  
Author(s):  
Lingyun Guo ◽  
Qiang Ru ◽  
Xiong Song ◽  
Shejun Hu ◽  
Yudi Mo

The as-prepared pineapple-shaped ZCO with a porous nanostructure shows a high specific capacity, superior rate capability and excellent cycling stability when used as an anode material for LIBs.


2019 ◽  
Vol 48 (28) ◽  
pp. 10422-10426 ◽  
Author(s):  
Xing Meng ◽  
Hai-Ning Wang ◽  
Yan-Hong Zou ◽  
Lu-Song Wang ◽  
Zi-Yan Zhou

POM-based metallogels are employed as anode materials for the first time, which exhibit high reversible capacity, high rate capability, and good cycling stability.


RSC Advances ◽  
2016 ◽  
Vol 6 (19) ◽  
pp. 15492-15500 ◽  
Author(s):  
Zhanyu Li ◽  
Jianling Li ◽  
Yuguang Zhao ◽  
Kai Yang ◽  
Fei Gao ◽  
...  

Sm doping has a great impact on discharge capacity, rate capability and cycling performance of LTO anode materials for lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document